
SOUTHWEST RESEARCH INSTITUTE

6220CULEBRAROAD" POST OFFICE DRAWt=R 28510 • $AN ANTONIO, TEXAS. USA 78228-0510 • (512)684-5_11 • TELEX244846

September 26, 1990

Mr. Larry D. Bishop

Building 30A, Room 2007B, DK331

NASA - Johnson Space Center

Houston, Texas 77058

Subj ec t : Delivery of the Final Report for Research Into Alternative

Network Approaches for Space Operations Support; NASA Grant NAG

9-369; SwRI Project No. 05-2921

Dear Mr. Bishop:

Enclosed with this letter is the final report pertaining to the

research performed for alternative network approaches for space

operations. This document includes the results of our research findings

as well as the SwRI code that was developed for the proof-of-concept

prototype effort. This delivery constitutes the completion of this
research effort.

If you have any questions or comments, please call Dr. Antone L.

Kusmanoff at (512) 522-5396.

Sincerely,

Melvin A. Schr

Director

Data Systems Department

MAS:ALK:pam

Enclosures (5 copies)

cc: Antone L. Kusmanoff _q_4__

Susan B. Crumrine _/_<._

Timothy J. Barton

William A. Bayliss

Noel C. Willis, Jr.

Thomas J. Purk, NASA-JSC, BG 211

ASA Scientific and Technical Information Facility (2 copies)

SAN ANTONIO, TEXAS

HOUSTON, TEXAS • DETROIT, MICHIGAN " WASHINGTON, DC

SOUTHWEST RESEARCH INSTITUTE

Post Office Drawer 28510, 6220 Culebra Road

San Antonio, Texas 78228-0510

RESEARCH INTO ALTERNATIVE
NETWORK APPROACHES
FOR SPACE OPERATIONS

FINAL REPORT

NASA Grant No. NAG 9-369
SwRI Project No. 05-2921

Prepared by:

Antone L. Kusmanoff, Ph.D.
Timothy J. Barton

Prepared for:

NASA
Johnson Space Center

Houston, Texas

September 27, 1990

Approved:

Melvin A. Schrader, Director

Data Systems Department

TABLE OF CONTENTS

1.0 INTRODUCTION i

i.i Computer-Communlcatlons 2

I.i.i Standards 2

i.i.I.I CCITT 3

1.1.1.2 ISO 3

1.1.1.3 ANSI 3

1.1.1.4 IEEE 3

1.1.2 Standards Organization Relationships 4

1.2 OSI Layering 4
1.3 NASA Environment 5

2.0 INTEROPERABILITY STRATEGY 7

2.1 Common Protocol 7

2.2 Single Terminology Basis 8

2.3 Abstract Primitives vs Actual Code 9

3.0 TRANSPORT LAYER STANDARD INTERFACE MODEL ii

3.1 Transmission Control Protocol Services to Upper Layer ii

3.1.1 TCP Petition Primitives 12

3.1.1.1 Unspecified Passive Open (UPO) 12

3.1.i.2 Fully Specified Passive Open (SPO) 12

3.1.1.3 Active Open (ACO) 13

3.1.1.4 Active Open With Data (AOD) 13

3.1.1.5 Send (SND) 13

3.1.1.6 Allocate (ALC) 13

3.1.1.7 Close (CLS) 14

3.1.1.8 Abort (ABT) 14

3.1.1.9 Status (STT) 14

3.1.2 Service Reaction Primitives 14

3.1.2.1 Open Id (OID) 15

3.1.2.2 Open Failure (OFA) 15

3.1.2.3 Open Success (OSC) 15

3.1.2.4 Deliver (DLV) 15

3.1.2.5 Closing (CLG) 15

3.1.2.6 Terminate (TRM) 15

3.1.2.7 Status Response (STR) 16

3.1.2.8 Error (ERR) 16

3.1.3 TCP Service Sequenced Interchange Model 16

3.2 CCITT X.214/ISO IS 8072 19

3.2.1 CCITT Transport Level Service Petition Primitives 20

3.2.1.1 T-CONNECT Request (CNRQ) 20

3.2.1.2 T-CONNECT Response (CNRS) 20

3.2.1.3 T-DATA Request (DARQ) 21

3.2.1.4 T-EXPEDITED-DATA Request (EDRQ) 21

3.2.1.5 T-DISCONNECT Request (DSRQ) 21

TABLEOFCONTENTS(Continued)

3.2.2 Service Reaction Primitives 21

3.2.2.1 T-CONNECT Indication (CNIN) 21

3.2.2.2 T-CONNECT Confirm (CNCF) 22

3.2.2.3 T-DATA Indication (DAIN) 22

3.2.2.4 T-EXPEDITED-DATA Indication (EDIN) 22

3.2.2.5 T-DISCONNECT Indication (DSIN) 22

3.2.3 X.214 TP4 Service Sequenced Interchange Model 22

4.0 TRANSLATOR INTERACTION 26

4.1 Translator and TSU Interface Relationship Analysis 26

4.1.I TCP TSU Petition Primitives 26

4.1.i.I Unspecified Passive Open (UPO) 27

4.1.i.2 Fully Specified Passive Open (SPO) 27

4.1.i.3 Active Open (ACO) 27

4.1.1.4 Active Open With Data (AOD) 28

4.1.i.5 Send (SND) 28

4.1.I.6 Allocate (ALC) 29

4.1.1.7 Close (CLS) 29

4.1.I.8 Abort (ABT) 29

4.1.i.9 Status (STT) 29• • • • • • . • • . . .

4.1.2 TCP Translator Reaction Primitives 29

4.1.2.1 Open ID (OID) 30

4.1.2.2 Open Failure (OFA) 30

4.1.2.3 open Success (OSC) 30

4.1.2.4 Deliver (DLV) 31

4.1.2.5 Closin 8 (CLG) 31

4.1.2.6 Terminate (TRM) 31

4.1.2.7 Status Response (STR) 31

4.1.2.8 Error (ERR) 32

4.2 Translator and Provider Relationship Analysis 32
4.2.1 TP4 Provider Petition Primitives 32

4.2.1.i T-CONNECT Request (CNRQ) 32

4.2.1.2 T-CONNECT Response (CNRS) 33

4.2.1.3 T-DATA Request (DARQ) 33

4.2.1.4 T-EXPEDITED-DATA Request (EDRQ) 33

4.2.1.5 T-DISCONNECT Request (DSRQ) 33

4.2.2 TP4 Provider Reaction Primitives 34

4.2.2.1 T-CONNECT Indication (CNIN) 34

4.2.2.2 T-CONNECT Confirm (CNCF) 34

4.2.2.3 T-DATA Indication (DAIN) 34

4.2.2.4 T-EXPEDITED-DATA Indication (EDIN) 34

4.2.2.5 T-DISCONNECT Indication (DSIN) 34

4.3 Translator Sequenced Interchange Model 35

li

kj

TABLE OF CONTENTS (Continued)

5.0 PROOF-OF-CONCEPT DEMONSTRATION CODE 40

5.1 Initial tasks 40

5.1.1 RTU Network Source Code 40

5.1.2 GPLAN Software 41

5.1.3 GPLAN Hardware 41

5.1.4 Replica GPLAN Link 42

5.1.4.1 LLC Driver 42

5.1.4.2 WEX-less GPLAN 42

5.2 TCP/TP4/TCP Translator Code 42

5.2.1 Interface to TP4 Daemon 42

5.2.1.1 Initial Pruning 43

5.2.1.2 Multiple TSAPs in a Single Process 43

5.2.1.2.1 Message Queue IDs and Registration 44

5.2.1.2.2 Event Queues 44
5.2.1.2.3 TRANslator Daemon 45

5.2.1.2.4 Multiple VC Demonstration 45

5.2.2 C language library of TCP calls 46
5.2.2.1 In-kernel vs External Translator 46

5.2.2.1.1 In-kernel Advantages 47

5.2.2.1.2 In-kernel Disadvantages 47

5.2.3 Translator Library 48

5.2.4 Virtual Circuit (VC) Addressing 50

5,2.5 Host Addressing 51

5.2.6 TRANd daemon 51

5.2.6.1 Replacement for LANdaemon 51

5.2.6.2 Multiple Translator Processes 52

5.3 Prototype Results 52

6.0 CONCLUSION _ 53

6.1 Theoretical Development 53

6.2 Proof-of-Concept 53

6.3 Further Research Considerations 54

6.3.1 Nonconformity to Standards 54

6.3.2 Performance Impact Issues 55

APPENDIX A: ACRONYMS I

APPENDIX B: REFERENCES i

iii

LIST OF FIGURES

3-i
3-2
3-3
3-4
3-5
3-6
3-7
3-8.
3-9.

SUCCESSFOL TRANSPORT CONNECTION ESTABLISHMENT (PASS OPEN)

SUCCESSFUL TRANSPORT CONNECTION ESTABLISHMENT (SPEC OPEN)

REJECTION OF TRANSPORT CONNECTION ESTABLISHMENT (NOT OPEN)

REJECTION OF TRANSPORT CONNECTION ESTABLISHMENT (PROVIDER)

NORMAL DATA TRANSFER

TRANSPORT SERVICE PETITION TO PROVIDER

GRACEFUL CLOSE BY USER

ABRUPT CLOSING BY USER

TRANSPORT SERVICE USER TO PROVIDER

3-I0. PROVIDER TO TRANSPORT SERVICE USER

3-11. SUCCESSFUL TC ESTABLISHMENT

3-12. REJECTION OF TC ESTABLISHMENT (TS USER)

3-13. REJECTION OF TC ESTABLISHMENT (PROVIDER)

3-14. NORMAL DATA TRANSFER

3-15. EXPEDITED DATA TRANSFER

3-16. TC RELEASE BY TSU

3-17. TC RELEASE BY BOTH TSU PARTIES

3-18. TC RELEASE BY PROVIDER

3-19. TC RELEASE INITIATED BY USER AND PROVIDER

4-1. SUCCESSFUL TRANSPORT CONNECTION ESTABLISHMENT (PASS OPEN)

4-2. SUCCESSFUL TRANSPORT CONNECTION ESTABLISHMENT (SPEC OPEN)

4-3. REJECTION OF TRANSPORT CONNECTION ESTABLISHMENT (NOT OPEN)

4-4. REJECTION OF TRANSPORT CONNECTION ESTABLISHMENT (PROVIDER)

4-5. NORMAL DATA TRANSFER

4-6. TRANSPORT SERVICE PETITION TO PROVIDER

4-7. GRACEFUL CLOSE BY USER

4-8. ABRUPT CLOSING BY USER

4-9. TRANSPORT SERVICE USER TO PROVIDER

4-10. PROVIDER TO TRANSPORT SERVICE USER

5-1. TCP FUNCTION TO RTU KERNEL FLOW

5-2. MODEL AND CODE RELATIONSHIPS

5-3. TCP/IP VC IDENTIFIER

17

17

17

18

18

18

18

19

19

19

23

23

23

24

24

24

25

25

25

35

36

36

37

37

38

38

38

39

39

46

49

51

iv

1.0 INTRODUCTION

Information p[ocessing and associated computer-communication networks are

constantly expanding to keep pace with the surging demands of an ever-

increasing technological community. This is no more clearly seen than in

one of the nation's hubs of technological application, the National

Aeronautics and Space Administration's Mission Control Center (MCC) at the

Johnson Space Center (JSC). The MCC serves as the nerve center for

planning and controlling of manned space-flight missions. Over the years

of its existence, the computer network architecture of the MCC has been

iteratively redesigned due to technological advances and demands of the

space operational team. The most recent step in this evolution is

occurring during what is called the MCC Upgrade {MCCU). This kind of

growth is happening not only at the JSC MCC, but at many other government

and commercial locations that have heavily computerized support centers.

In the past, this kind of complex and somewhat rapid growth led to a

situation where manufacturers responded by developing proprietary methods

of computer-communication within their own product lines to provide the

connectivity demanded by the spreading network. This maneuver meant that

the computer-communication systems designers were required to integrate a

variety of heterogeneous equipments, systems, and facilities into a

smoothly functioning cohesive network to support their critical missions.

What was really needed was a unified approach that could interconnect these

dissimilar systems. Such a communications architecture would be "open" to

all who comply with the rules of the architecture.

The Department of Defense (DOD), based on separate reports generated by

the National Research Council (N-RC) and the National Institute for

Standards and Technology (NIST), has made a commitment to transition from

their own communications architectures and protocol standards to the

internationally recognized Open Systems Interconnection (OSI) architecture

and OSl-related international standards. The general strategy that has

emerged has three phases:

Phase I: Mandatory use of DOD military standards, normally

referred to as transmission control protocol/internet protocol

(TCP/IP), on procurements that involve networking and distributed

processing.

Phase II: Adoption of corresponding international standards as co-
standards to DOD standards.

o Phase III: Exclusive use of international standards.

The NASA MCCU General Purpose Local Area Network (GPLAN) is following the

Phase III procedure, exclusive use of the international standards, whenever

possible. The difficulties chat this phase brings about, and the reason

for this research, is that users who are presently employing the DOD

standard for their computer-communication needs must make software

modifications to convert their current applications to operate within the

international standards environment. This modification can be done quickly

by some user applications, however others cannot make the transition by

the time the network based on the CCITT/ISO standards is fully installed.

Because of thSs, some users will lose their system functionality after the
transition to international standards.

To allow progression to the newer standards, and still fully support its

present users, NASA has instituted this research to determine if a method

exists that will allow users of the DOD TCP/IP protocol family to send

computer messages across a CCITT/ISO standards environment without

modification to the original application software.

The answer to this research question begins with the analysis of a generic

computer-co--,unlcatlon background circumstance and finishes by considering

the specific NASA JSC MCC implemented situation as a specific proof-of-

concept demonstration. This report provides the strategy of conversion

chosen which considers the parallel and divergent relationships within each

of the protocol families considered. A detailed model of the strategy was

derived and an implemented set of procedures was developed to prove out the

solutions concept. The remainder of this introduction provides the

background necessary to follow the research development activities.

i.i ComDuter-Communlcatlons

The basic demand for communication presupposes the existence of the

following: 1) at least two users, 2) information to be shared, 3) a common

language between them, 4) a method to support the exchange, and 5) a method

to control the exchange. All five of these elements are required for
computer-communications. In this case, it is assumed that at least two

user applications already exist, and that they are presently communicating

information using the DOD TCP/IP as the method to control the exchange.

The method of exchange, the fifth element above, is the one that is the

center of this research study. Very little reference needs to be made to

the details of the other four communication requisites as they already

exist in a compatible state and will not change in relation to the research

problem.

l.l.l

There are several bodies that are associated with publishing standards

related to computer-communlcatlon. Some of the standards are as simple as

defining common signaling speeds and others are as complex as describing

the entire structure of a computer-communlcatlon architecture. The

standard is a rule or set of rules which have been accepted by those
concerned as a model to build a structure. Variation from the standards is

not an uncommon event, and as can be expected, when enough vary from the

current standard to a coinciding, but different new position, another

standard is developed around that new position. A brief description of the

major standards organizations is given below to eliminate confusion during

the discussion in this area. Note that there are more standards

organizations than those listed below, and these were chosen because of

their dominate role in this study and the data communications industry.

1.Z.l.Z .¢_

The International Telegraph and Telephone Consultative Committee (CCITT)

is an operatfng arm of the International Telecommunication Union (ITU).

The CCITT is an inter-governmental treaty organization (a United Nations

treaty), and as such, its published standards are mandatory for use in

Public Telephone and Telegraph organizations of a country. The interests

of the United States are administered by the State Department, our voting

member to CCITT. Since in the United States the telephone networks are

privately owned, another level of membership to CCITT is also provided to

recognize these private operating agencies. A membership level is also

open to standards organizations such as the International Organization for

Standardization (ISO). CCITT publishes its volumes every four years,

currently the 1988 "blue books" use about four feet of shelf space covering

a wide range of telecommunication concerns.

l.l.l.2 _SO

ISO is a voluntary organization founded to promote the development of

international standards which will facilitate the exchange of goods and

services and increase cooperation in technical and economic activities.

ISO membership has approximately 70 member countries and 15 corresponding

members. Membership is limited to the body most representative of

standardization in a respective country. The United States is represented

at ISO by the American National Standards Institute (ANSI). The activities

of ISO are principally from the user committees and manufacturers in

contrast to the carriers that are represented in CCITT.

l.l.l.3 ANSl

ANSI is a voluntary basis organization that was founded in 1918, although

it was known by different names until its 1969 reorganization when it

adopted ANSI. ANSI is a voluntary federation of approximately 200

organizations which represent commercial, trade, professional, consumer,

etc. interests including government. ANSI finances itself with the sale

of its standards and it dues. Technical committees recommend the standards

and the Board of Standards Review approves the standards once it is assured

that a consensus has been reached on the proposed standard. ANSI would

normally adopt the ISO standards as it is a member of the ISO. However, if

a specification differs due to unique aspects of North American systems,

its specification will reflect that difference. The X3 committee was

formed to establish standards related to computers and information

processing and the OSI model.

1.1.1.4 IEEE

The Institute of Electrical and Electronic Engineers (IEEE) is a voluntary

well-known professional society with chapters world-wide. It has most

recently focused on the 802 structure for local area networks (LANs)

providing standards that relate to the lower three levels of the OSl

reference model. There are many other standards published by IEEE other

than the 802 series; however, these are the only ones that provide

interworklng with the OSI reference model. Although the society has

published'the standards, the work building the standards was done by a

subgroup wlthln IEEE.

1.1.2 Standards Or_anlzation Relationships

The standards activities of most of the major organizations are closely

interrelated. As was stated, ANSI is the United States member body in ISO.

ANSI works with the State Department study groups to CCITT. ISO is a

member of CCITT. There are other formal relationships between standards

bodies, but Just as important, there is also an informal infrastructure.

Many times the same individual may hold two or more memberships, companies

are represented in some manner in all of the major organizations, and

delegations to international meetings are made up of the members of the

different groups interested in the subject. These interrelationships are

important to the process of standards development and the negotiation

efforts that obviously occur. Their cooperation helps reach the widespread

consensus necessary to install an international standard.

1.2

In the OSI reference model, a system of seven layers are the foundation

for the "open" nature of the protocol suite. According to this technique,

each open system is viewed as logically composed of an ordered set of

subsystems. Neighborlng subsystems communicate through their common

boundary by defined service requests and responses. There were several

principles used as the basis to determine the number and nature of the

layers. The CCITT X.200 and ISO 7498 standards both present these

developmental principles for those interested. The two standards are

nearly identical, however as this research deals with a United States

governmental body, reference to terminology and definitions of CCITT X.200
will be followed when there is a conflict.

As a simple overview, the seven layers that are the basis of OSI

communication will be brlefly described with the primary reason(s) the

layer is determined to exist. Note that every layer has associated with

it both services and functions. In order for a layer to provide its

services to the layer above it, the layer must execute those processes

necessary to perform its functions. The functions are performed in concert

with its peer layer throughout the netlqork connections. The peer layers

must accomplish the function by using the services of the layers below it.

The peer protocols establish logical circuits (or virtual circuits (VCs))

between users by using the services of the lower layers. The following

description for each of the layers will focus on the service the layer

performs, and not on the details of the functions it must execute to

perform its services.

i) The lowest layer in the model is called the Physical layer. This

layer is responsible to connect, maintain and disconnect the

physical circuit between the communication devices.

2)

3)

The Data Link layer has the responsibility of making the Physical

layer appear error free to the network layer.

Q

The Network layer provides network routing and switching through

a network. The network consists of concatenated data links.

4) The Transport layer provides the first user-to-user level of peer

protocols providing end-to-end accountability. This is the

highest layer of the services associated with the providers of

communication services. It does not matter how many links, nodes,

or networks that are involved.

5) The Session layer serves as the organizer for the exchange of data

between users. The session service binds together two cooperating

user processes into a temporary communicating relationship.

6) The Presentation layer provides the syntax of the data in the

model. It assures the application program properly interprets the

data being transferred.

7) The Application layer is concerned with the support of an end-user

application process. This layer is concerned with the semantics

of the data. It supports application processes not a higher layer

of the OSI model.

The OSI reference model provides a powerful tool for the communication

designers use and implementation. However, it is only a baseline reference

and not a specific solution. The partitioning allows planning as well as

implementation and standards to proceed along clearly defined lines which

can be combined into a cohesive solution even among multiple manufacturers.

1.3 NASA Environment

This research effort is being applied to a general problem that multitudes

of networks are facing as they upgrade from TCP/IP to OSl based standards.

The theoretical solution intent is to achieve a universal translation

strategy that can be a pilot for specific network implementations.

However, the verification process of this research includes developing code

for a proof-of-concept activity that was generated against a specific

network system. The network chosen supports the MCCU at NASA/JSC. It

falls into the category of networks that have the specific multiple

protocol problem, and its ready access to its internal workings were

available for this investigation. This section very briefly discusses the

network environment at JSC. Details can be found in the chapter on

implementation for those who intend to use this research as an execution

guide in a development of a translator system of their own.

As was stated earlier, the MCC serves as a nerve center for the planning

and controlling activities associated with manned space-flight missions.

In fact, it has done so since June of 1965 when the Gemini IV mission

occurred. The custom built, proprietary, display and communication systems

in the MCC with associated hardware drivers and interfaces were becoming

obsolete. In addltlon, operators began to seek computatlonal support

outslde of that directly provlded by the MCC host systems. These trends

led to th_Mlsslon Control Center Upgrade (MCCU) Program, which included

mainframe computer replacement, the addition of supporting communication

networks, and_the addition of workstations as the foundation for the MCC

monltor outputs. Durlng this process It was also decided to follow the

internatlonal communlcatlons standards where ever posslble. An informative

document released in 1987 tltled "The Evolution of the Mlsslon Control

Center," spells out the history and the many features of the MCCU In sharp

detail. It was wrltten by Mr. Michael W. Kearney, an employee at NASA/JSC,

and it can be found in the reference appendlx to thls document. The

challenge of MCCU was large for NASA and its contractors, and is, in fact,

still underway at the finish of this research project. The area of MCCU

development that has greatest bearing on th£s research was the enhancement

of the GPLAN which uses OSI based comunicatlon protocols as a replacement

for the systems that previously used TCP/IP based message trafflc.

2.0 INTEROPERABILITY STRATEGY

m

The goal of this research is to resolve the Interoperability problem of

applications _mploying the DOD TCP/IP family of protocols on a CCITT/ISO

based network. The objective is to allow them to communicate over the

CCITT/ISO protocol GPLAN network without modification to the user's

application programs. There were two primary assumptions associated with

the solution that was actually realized. The first is that the solution

had to allow for future movement to the exclusive use of the CCITT/ISO

standards. The second is that the solution had to be software transparent

to the currently installed TCP/IP and CCITT/ISO user application programs.

2.1 Cgmmon Protocol

To continue to have application level Interoperabllity it is necessary to

have a common protocol (at the source and destination) from the user

applications down to any crossover point that is developed. Within

available implemented standards, it is theoretically possible in TCP/IP to

approach a gateway function below IP as defined in TCP/IP documentation.

With this method, for two systems to communicate with TCP/IP it is

necessary for them to be compatible from above the gateway, the IP

protocol, through the user application program. A solution of this kind

would not be in line with the first assumption stated above. Also, it may

not be a practical for processors in the system to have TCP/IP reside above

the gateway system along with the required CCITT/ISO implementation

protocols. Further, the installation of such a gateway would require a

significant software development effort for the network support activities

for users in such a dilemma.

Above the first four OSI communications layers, the higher level protocol

layers are very diverse and it is much more difficult to engineer a method

to convert between them. However, the international and DOD transport

layer implementations have very common design features which was the result

of a great deal of functional design compatibility associated with the OSI

architecture and the TCP/IP in-place standard. Furthermore, in order to

maintain the end-to-end transport operation feature, the transport layer

virtual circuits must be preserved. Another consideration was that the

transport layer normally resides within the operating system, tailored to

the system it supports, meaning that the application program would not need

modification. On the other hand, the upper three layers of the OSI model

are usually found implemented within the application processes causing user

application program modification mandatory, in violation to the second

assumption.

These considerations, and others, drove the TCP/IP-OSI-TCP/IP Translator

developed to be established at the Transport level of the OSI model.

According to the CCITT and ISO international standards, the transport

service is designed to provide the transparent transfer of data between

session entities and relieves them from concern with the detailed way in

which reliable and cost effective transfer of data is achieved. The

protocols defined in the transport layer have end-to-end significance,

where the ends are defined as correspondent transport entities. The

transport layer is relieved of concern with routing, and relaying. The

transport_unctlon invoked in the transport layer to provide a requested

service quality depends on the quality of the network-service available.

The negotiation of these and other factors is related to the transport

level services. The general description of the services provided are as

follows:

a.

C.

d.

Establishes duplex transport-connectlons,

Maintains transport-connectlons to allow data transfer,

Releases transport-connectlons.

Each service provided by the transport layer can be tailored through the

use of transport functions and facilities. The cooperation between the

transport entities is controlled by the transport entities themselves.

The concern in this study is the actual interface services seen between the

Transport Service User, hereafter called the TSU, and the transport

protocol entity, hereafter called the Provider. In the DOD environment,

the transport layer protocol is called Transmission Control Protocol (TCP)

which is defined by Mil-Std-1778. When using the CCITT/ISO standard the

transport layer is appropriately called the Transport Protocol (TP).

CCITT/ISO goes a step further than TCP/IP by classifying five similar, but

different, classes of transport level operation. The class that is applied

at MCC is transport protocol class 4. For this reason, the transport

protocol in the CCITT/ISO environment will be referred to simply as TP4.

Of course, below the transport layer is the network layer which appears as

a provider to the transport entity. This relationship is transparent to

the TSU, hence it can only recognize the transport entity as its Provider.

In reality, all of the layers below the transport layer make up the

function seen as the Provider to the TSU.

Within CCITT X.214, the interface definition to TP4, four transaction

classes, called primitives, are invoked to and from the TSU through service

access points (SAP) to the Provider. Within TCP the interaction primitives

are grouped into two classes based on the direction of information flow.

Downward directed communications are called service request primitives and

upward directed communications are called service response primitives.

2.2 _ingle Termlnolorv Basis

In this study, at times both of the standards are dealt with

simultaneously. In an attempt to isolate their different terminologies and

remain somewhat logical with the labeling, a new set of terms different

from both standards will be used. With this language the primitives will

be grouped in accordance to the direction the transactions occur across the

Translator interfaces. If the direction of the primitive is from the TSU

to the Translator or Translator to Provider it will be called a petition

Primitive. If the direction of the primitive is from the Provider to the

Translator or Translator to TSU it will be called a Reaction Primitive. In

8

accordance with this labeling, the below applies (this table is using the

individual standards' languages):

o

a. Petition Primitives derived from the TP4 standard.
=

I) TP4 Request:

2) TP4 Response:

Primitive by service user to invoke a

function.

Primitive by service user to complete a

function previously invoked by an Indication

at the SAP.

b. Reaction Primitives derived from the TP4 standard.

I) TP4 Indication: Primitive by service provider to invoke a
function or indicate a function has been

invoked.

2) TP4 Confirm: Primitive by service provider to complete a

function previously invoked by a request at
that SAP.

c. Petition Primitive derived from the TCP standard.

i) TCP Request: Primitive by TSU to enable connection

establishment, data transfer, and connection

termination.

d. Reaction Primitive derived from the TCP standard.

i) TCP Response: Primitive by Provider to inform TSU of various
connection conditions.

2.3 Abstract Primitives vs Actual Code

In order to use a primitive, it must be coded into software with a very

specific format. The primitive is issued to the layer to invoke the

service entities and create headers that will be used by the peer layer in

the remote station. Abstract primitive systems are used in the standards

and in this study for the following reasons:

a. They permit a common convention to be used between layers.

b. They give the vendor a choice as to how the primitives will be

implemented on a specific machine.

C. They ease the task of layer transportability between different

vendor machines.

d. The use of standard primitives encourages the use of common

formats of the data units.

The primitives provide a common base to compare transport services without

taking a particular manufacturers software version or labeling procedures

into account. In order for the design to be applied, the primitives

eventually have to be integrated into implemented software. This occurred

during th_ proof-of-concept phase for this NASA research (see Chapter 5)

but in the following chapters, discussions will be using the general

primitives as=they are specified above.

After preliminary study, it appeared practical to translate TCP service

petitions into TP4 primitives when two hosts, or users, are communicating

with TCP/IP. Likewise, it appeared possible to translate reactions from

the CCITT/IS0 protocol suite as TCP primitives that were reactions to the

TCP application. This translation is possible only where the TP4 protocol

is a super set or common set of TCP. For features not available in TP4,

the TCP/IP users must agree to not use those elements.

With this strategy, a processor station can maintain the TCP/IP

applications while the network is installing CCITT/ISO communication

software. Once the addition of CCITT/ISO upper layers is accomplished, the

applications can begin to migrate to them until there are no longer TCP/IP

application users. At that point, the translator can be extracted from the

system.

The Translator will appear to a TCP/IP TSU as a standard TCP interface to

the CCITT/ISO Provider. Likewise, the Translator will appear to the

CCITT/IS0 Provider as the TP4 interface to the TCP/IP TSU. In other words,

the Translator will have one interface encountering the TCP/IP TCP TSU and

the other interface encountering CCITT/IS0 TP4 from the Provider. On the

TSU-Translator interface the TCP Petition and Reaction Primitives will be

received and issued. Similarly, on the Translator-Provider interface

corresponding TP4 Petition and Reaction Primitives will be issued and

received. Although not used in this research, it may be possible, and

deslreable, to define new local Translator to destination Translator

management peer functions to assist in the management of the link and

forward required information.

i0

3.0 TRANSPORT LAYER STANDARD INTERFACE MODEL

e

This chapter discusses the transport layer interface service primitives as

found in the DOD and the CCITT/ISO international standards. The service

primitives defined for use on the interface to TCP will be discussed first.

These primitives enable the needed functions that the application program

applies for communication services. To have the need to use the

Translator, it is assumed that these TCP service primitives have been

implemented and are available through an application program between two

users. The standard TP4 service primitives that exist to support the

communications are discussed next in section 3.2. This section is a

discussion of the transport layer service primitives that are presently

available. Their actions must be known quantities to the Translator and

are therefore explained here. The actions to be followed by the Translator

to convert the TCP primitives into TP4 primitives will be provided in a

later chapter.

3.1 Transmission Control Protocol Services to UoDer Laver

The transport layer in TCP/IP called Transmission Control Protocol (TCP),

MIL-STD-1778, was designed to provide reliable communication between pairs

of processes in logically distinct hosts on networks and sets of

interconnected networks. TCP is designed to operate successfully in an

environment where the loss, damage, duplication, out of order data, and

network congestion can occur. TCP appears in the DOD protocol hierarchy

at the transport layer which is a counterpart with the transport layer

defined in CCITT X.200 and IS 7082. TCP is defined to provide connection-

oriented data transfer that is reliable, ordered, full-duplex, and flow

controlled. TCP supports a wide range of upper layer protocols (ULP).

The major categories of service provided by TCP can be organized as

follows:

a.

b.

c.

Connection management services

Data transport services

Error reporting services

An interaction primitive defines the information exchange between two

adjacent protocol layers. In TCP, information passed downward is called

a "service request primitive." To stay within the language structure of

the general framework established for this study in Chapter Two, service

request primitives will be called Petition Primitives. In TCP, information

units passed upward are called "service response primitives." Again, to

align with the earlier defined structure, they will be referred to as

Reaction Primitives. These interaction primitives need not occur in pairs.

That is, a Reaction Primitive may occur independently of a Petition

Primitive.

Ii

3.1.1 TCP Petition Primitives

The TCP Pe_itlon Primitives enable connection establishment, data transfer,
and connection termination. The Petition Primitives are:

a. Unspecified Passive Open

b. Fully Specified Passive Open

c. Active Open

d. Active Open With Data

e. Send

f. Allocate

g. Close
h. Abort

i. Status

The Petition Primitive abbreviations, a description of the Petition

Primitive action, and list of parameters for each Petition Primitive is

given below. Optional Petition Primitive parameters are indicated by being

followed by "[optional]."

3.1.1.1 Vnspecified Passive ODen (UPO}

This service Petition Primitive allows a ULP to listen for and respond to

connection attempts from an unnamed ULP at a specified security and

precedence level. TCP accepts in an Unspecified Passive Open at least the

followln 8 information:

a.

b.

C.

d.

e.

Source port

ULP timeout [optional]

ULP timeout action [optional]
Precedence Toptional]

Security_range [optional]

3.1.1.2 Fully Soecified Passive Open (SPO)

This service Petition Primitive allows a ULP to listen for and respond to

connection attempts from a fully named ULP at a particular security and

precedence level. TCP accepts in a SPO at least the following information:

a.

b.

C.

d.

e.

f.

g.

Source port

Destination port
Destination address

ULP timeout [optional]

ULP timeout action [optional]

Precedence Toptional]

Securlty_range [optional]

12

3.1.1.3 Active Oven (ACO)

This service Petition Primitive allows a ULP to initiate a connection

attempt to a gamed ULP at a particular security and precedence level. TCP

accepts in an ACO at least the following information:

a.

b.

C.

d.

e.

f.

g.

Source port

Destination port

Destination address

ULP tlmeout [optional]

ULP timeout action [optional]

Precedence Toptional]

Security [optional]

3.1.1.4 Active Oven With Pat_ (AOD)

This service Petition Primitive allows a ULP to initiate a connection

attempt to a named ULP at a particular security and precedence level

accompanied by the specified data. TCP accepts in an AOD at least the

following information:

V

a.

b.

C.

d.

e.

f.

g.
h.

i.

j.
k.

Source port

Destination port

Destination address

ULP tlmeout [optional]

ULP tlmeout action [optional]

Precedence Toptlonal]

Security [optional]

Data

Data length

PUSH flag

URGENT flag

3.1.1.5 Send (SND)

This service Petition Primitive causes data to be transferred across the

named connection. TCP accepts in a SND at least the following information:

a

b

c

d

e

f

g

Local connection name

Data

Data length

PUSH flag

URGENT flag

ULP timeout [optional]

ULP timeout_action [optional]

3.1.1.6 Allocate (ALC)

This service Petition Primitive allows a ULP to issue TCP an incremental

allocation for receive data. The parameter, data length, is defined in

single octet units. This quantity is the additional number of octets which

13

the receiving ULP is willing to accept.
following information:

t

a. Local connection name

b. Data length

TCP accepts in an ALC at least the

3.1.1.7

This service Petition Primitive allows a ULP to indicate that it has

completed data transfer across the named connection. TCP accepts in a CLS

at least the following information:

a. Local connection name

3.1.1.8 bk r, LM

This service Petition Primitive allows a ULP to indicate that the named

connection is to be immediately terminated. TCP accepts in an ABT at least

the following information:

a. Local connection name

3.1.1.9

This service Petition Primitive allows a ULP to query for the current

status of the named connection. TCP accepts in a STT at least the

following information:

a. Local connection name

3.1.2 Service Reaction Primitives

TCP returns the Petitioned status information in a Status Reaction. Several

service Reaction Primitives are provided to enable TCP to inform the user

of connection status, data delivery, connection termination, and error

conditions. The Reaction Primitives are:

a. Open Id

b. Open Failure

c. Open Success
c. Deliver

d. Closing
e. Terminate

f. Status Response

g. Error.

The Reaction Primitive abbreviations, a description of the Reaction

Primitive action, and list of parameters for each Reaction Primitive is

given below. Optional Reaction Primitive parameters are indicated by being

followed by "[optional]."

v

14

3.1.2.1 Oven Id (OLD)

This service Reaction Primitive informs a ULP of the local connection name

assigned by TCP to the connection requested in one of the previous service

Petitions, uPb, sPo, or an ACO. TCP provides in an OID at least the

following information:

a.

b.

C.

d.

Local connection name

Source port

Destination port [if known]

Destination address [if known]

3.1.2.2 Open Failure (OFA)

This service Reaction Primitive informs a ULP of the failure of an ACO

Petition Primitive. TCP provides in an OFA at least the following

information:

a. Local connection name

3.1.2.3 OPen Success (OSC)

This service Reaction Primitive informs a ULP of the completion of one of

the petitions that open service. TCP provides in an OSC at least the

following information:

Local connection name

This service Reaction Primitive informs a ULP of the arrival of data across

the named connection. TCP provides in a DLV at least the following

information:

a. Local connection name

b. Data

c. Data length

d. URGENT flag

3.1.2.5

This service Reaction Primitive informs a ULP that the peer ULP has issued

a CLOSE service Petition. Also, TCP has delivered all data sent by the

remote ULP. TCP provides in a CLG at least the following information:

a. Local connection name

3.1.2.6 Terminate (TRM)

This service Reaction Primitive informs a ULP that the named connection

has been terminated and no longer exists. TCP generates this response as

a result of a remote connection reset, service failure, and connection

15

closing by the local ULP. TCP provides in a TRM at least the following

information:

D

a. Local connection name

b. Descrlptlon

3.1.2.7 $_a=u$ Resoonse (STR)

This service Reaction Primitive returns to a ULP the current status

information associated with a connection named in a previous STT Petition

Primitive. TCP provides in a STR at least the following information:

a.

b.

c.

d.

e.

f.

g.
h.

i.

J.
k.

1.

m.

n.

Local connection name

Source port

Source address

Destination port

Destination address

Connection state

Amount of data in octets willing to be accepted by the local TCP

Amount of data in octets allowed to send to the remote TCP

Amount of data in octets awaiting acknowledgment

Amount of data in octets pending receipt by the local ULP

Urgent state
Precedence

Security
ULP timeout

3.1.2.8

This service Reaction primitive informs a ULP of illegal Petition

Primitives relating to the named connection or of errors relating to the

environment. TCP provides in an ERR Reaction Primitive at least the

following information:

a,

b.

Local connection name

Error description

3.1.3 TCP Service Seouenced Interchan2e Model

Using above service Petition and Reaction Primitives the functions of

establishing, maintaining and releasing transport connections is achieved

in a TCP/IP based network. The following sequences of transport level

service primitives are the ordered procedures required to achieve these

various activities on TCP/IP networks. The items below are required in

the TCP/IP model, hence they will be the driving functions that have been

translated and supported on the ISO network using the TP4 primitives.

16

ACO>

< OZll

OSC >

FIGURE 3-1. SUCCESSFUL TRANSPORT CONNECTION ESTABLISHMENT (PASS OPEN)

ACO>

< old

< os____C

OSC >

FIGURE 3-2. SUCCESSFUL TRANSPORT CONNECTION ESTABLISHMENT (SPEC OPEN)

ACO >

< OlD

<OFA!

FIGURE 3-3. REJECTION OF TRANSPORT CONNECTION ESTABLISHMENT (NOT OPEN)

17

I
ACO>l

D

< old

<OFA

FIGURE 3-4. REJECTION OF TRANSPORT CONNECTION ESTABLISHMENT (PROVIDER)

I I
s_Mp_._>I I

I I
I IDLY>
I I

FIGURE 3-5. NORMAL DATA TRANSFER

I I
I I

AI,c >1 I
I I
I I

FIGURE 3-6. TRANSPORT SERVICE PETITION TO PROVIDER

CLS >

CLG>

FIGURE 3-7. GRACEFUL CLOSE BY USER

18

ABT

[
__.> i"

[
[
[

I
I
I
ITS>
I

FIGURE 3-8. ABRUPT CLOSING BY USER

STT >I

<s_/K_i

FIGURE 3-9. TRANSPORT SERVICE USER TO PROVIDER

I I
I I

<_B__ I I
I I
I I

FIGURE 3-I0. PROVIDER TO TRANSPORT SERVICE USER

3.2 CCITT X.214/ISO IS 8072

Two international organizations, CCITT and ISO, have collaborated with

their standards for the service methods to their transport layer based on

the OSI reference model. The nearly identical documents, CCITT X.214 and

ISO IS 8072, define the transport service interface that provides

transparent transfer of data between Transport Service (TS) users on an OSI
standards based network. Note that because the standards are essentially

equal, reference will be limited to only the CCITT X.214 standard from this

point on. X.214 is designed to relieve the TS users from concern about

the detailed way in which supporting communications media are utilized to

achieve this transfer.

19

The X.214 transport service provides for the following:

a) The means to establish a Transport Connection (TC) with another TS

user for the purpose of exchanging Transport Service Data Units

(TSDUs).

b) The means to provide a certain Quality of Service (QOS) as

specified by the TS users.

c) The means of transferring TSDUs on a TC.

d) The unconditional release of a TC.

This list is compatible to the service features of TCP discussed in

paragraph 3.1, except that the release available with OSI/CCITT transport

service is only an unconditional "abrupt release" and does not define an

orderly release. There are other differences that will be noted in detail

later, however the Petition and Reaction Primitives that are available in

this standard need to be presented before the detailed comparative analysis

between TCP interface service features and the TP4 standard can begin.

3.2.1 CCITT Transoort Level Service Petition Primitives

The TP4, X.214, Petition Primitives enable connection establishment, data

transfer, and connection termination. The Petition Primitives are:

a.

b.

C.

d.

e.

T-CONNECT Request

T-CONNECT Response

T-DATA Request

T-EXPEDITED-DATA Request

T-DISCONNECT Request

3.2.1.1 T-CONNECT Reauest (CNRO)

The calling TSU invokes this function to initiate the establishment of a

transport connection. The TSU specifies both the remote Transport Service

Access Point (TSAP) and the remote Net-work Service Access Point (NSAP)

address. The calling TSU can specify its desired QOS, and it can express

its desire for the use of expedited data service. The following parameters

are attached to this primitive:

a.

b.

C.

d.

e.

Called address

Calling address

Expedited data [optional]

Quality of service [optional]

TS user-data [optional]

3.2.1.2 T-CONNECT Resoonse (CNRS)

The called TSU invokes this function to accept an incoming connection.

The called TSU may optionally transfer a limited amount of user data in

2O

the CNRS Petition Primitive.

primitive:

a. Quality of service

b. Responding address

c. Expedited data [option]

d. TS user-data [option]

3.2.1.3 T-DATA Reouest (DARO)

The following parameters are attached to this

The TSU calls this function to initiate transmission of user data. The

following parameter is attached to this primitive:

a. TS user-data

3.2.1.4 T-EXPEDITED-DATA Reouest (EDRO)

The TSU calls this function to indicate to TP4 that it wishes to send

expedited data on a TC. The connection must have been established with

expedited data usage negotiated. The following parameter is attached to

this primitive:

a. TS user-data

3.2.1.5 T-DISCONNECT Request CDSRO)

The TSU calls this function either to disconnect an established Transport

connection or to refuse an incoming connect indication. The following

parameter is attached to this primitive:

a. TS user-data

3.2.2 Service Reaction Primitives

Several Reaction Primitives are provided to enable X.214 to inform the user

of connection status, data delivery, connection termination. The Reaction

Primitives are:

a. T-CONNECT Indication

b. T-CONNECT Confirm

c. T-DATA Indication

d. T-EXPEDITED-DATA Indication

e. T-DISCONNECT Indication

3.2.2.1 T-CONNECT Indication (CNIN)

The called TP4 layer invokes this function to communicate to the TSU a

connect indication. TP4 specifies both the calling TSAP Selector Address

21

and the calling NSAP Address.

this primitive:
o

a. Called address

b. Calling address

c. Expedited data [option]

d.

e,

The following parameters are attached to

Quality of service [option]

TS user-data [option]

3.2.2.2 T-CONNECT Confirm (CNCF)

The calling TP4 invokes this function to communicate to the TSU a connect

confirm. The following parameters are attached to this primitive:

a,

b.

c.

d.

Quality of service

Responding address

Expedited data [option]

TS user-data [option]

3.2.2.3 T-DATA Indication (DAIN)

TP4 calls this function to notify the TSU that data has been received on

the connection. The following parameter is attached to this primitive:

a. TS user-data

3.2.2.4 T-EXPEDITED-DATA Indication (EDIN)

TP4 calls this function to notify the TSU that expedited data has been

received on the connection. The following parameter is attached to this

primitive:

a. TS user-data

3.2.2.5 T-DISCONNECT Indication (DSIN)

TP4 invokes this function to communicate a disconnect indication to the

TSU. The following parameters are attached to this primitive:

a.

b.

Disconnect reason

TS user-data [option]

3.2.3 _,214 TP4 Service Seouenced Interchange Model

As in the TCP based network, the above service Petition and Reaction

Primitives are used in the functions of establishing, maintaining and

releasing transport connections achieved in a TP4 based network. The

following sequences of transport level service Primitives are the ordered

procedures required to achieve these various activities on TP4 based

standards networks. The items below are related to the same service items

required in the TCP model, hence they will be the supporting structure that

the translator must use.

22

C_5.5.5.N_Q__>

<CNCF

CNIN>

<c_ms

FIGURE 3-ii. SUCCESSFUL TC ESTABLISHMENT

<P_$.IN_

CNIN>

< DSRO

FIGURE 3-12. REJECTION OF TC ESTABLISHMENT (TS USER)

CNRO >

FIGURE 3-13. REJECTION OF TC ESTABLISHMENT (PROVIDER)

23

I I
I_B.9_>I I

I I
I II;JJ,R_>
I I

FIGURE 3-14. NORMAL DATA TRANSFER

I I
Z_Z,.9_>I I

I I
I I_>
I I

FIGURE 3-15. EXPEDITED DATA TRANSFER

I I
DSRO >I I

I I
I II_,L>
I I

FIGURE 3-16. TC RELEASE BY TSU

24

I I
I I

D..__> I I_D_.__
I I
I I

FIGURE 3-17. TC RELEASE BY BOTH TSU PARTIES

I I
I I

<D_EL I I I_I!->
I I
I I

FIGURE 3-18. TC RELEASE BY PROVIDER

I I
I I

DSRO >I IDSm_ >
I I
I I

FIGURE 3-19. TC RELEASE INITIATED BY USER AND PROVIDER

25

4.0 TRANSLATORINTERACTION

This chapter describes the interaction required by the Translator to
fulfill its f_nctions between the TCP and TP4 entities. The Translator is

a programmatical function logically located between the TCP TSU, referred

to only as the TSU from this point onward, and the TP4 Provider, referred

to only as the Provider from this point onward. The Translator is able to

operate within both the TCP and TP4 service interface languages, using the

correctly associated Petition and Reaction Primitives. The following

sections present each of the possible Petition Primitives from the TSU

received by the Translator and the Petition Primitives that occur from the

Translator to the Provider. The analysis that determines the correct

conversion action necessary by the Translator is presented.

The first Translator function topic, section 4.1, will present the

Translator and TSU interface relationship analysis. Then, section 4.2

follows with a Translator and Provider interface relationship discussion.

The last discussion, section 4.3, presents the Translator sequence

interchange model that must be complied with by the implemented code. This

sequence is based on the individual service transport models developed in
the earlier chapters. Once again, a possible confusion could have been

caused if a preference to one of the standards' terminologies, "calling,"

"source _ or "local _ TSU, was applied within the Translator description for

what is the originating TSU. Therefore, a different but equivalent label,

"Origin TSU," was used within the Translator terminology when referring to

the originating TSU. Likewise, the Translator terminology will refer to

the "Target TSU" rather than the _called," _destination," or "remote" TSU

as they are applied in the international standards.

4.1 Translator and TSU Interface Relationship Analvsls

This section will address the various elements of each Petition and

Reaction Primitive that is possible within a TCP conforming service and

presents the proceedings necessary within the Translator to effect the

conversion. The Translator will be using the TP4 Petition and Reaction

Primitives to bring about the desired network operation over the TP4 based

network. This section is a description of the events that occur both
directions across the interface between the TSU and Translator based on

initiation of interaction by the occurrence of a TSU TCP Petition

Primitive. The TSU to Translator direction, the TSU TCP Petitions, will be

presented first, followed by the Translator to TSU direction that is based

on initiation of activity by the Translator TCP Reaction Primitives.

4.1.1 TCP TSU _etltion Primitives

In the discussion of the Petition Primitives, the TCP Reaction Primitives

will be applied when they are the required responses to the TSU by the

Translator. The primitive will be described in terms of its standard, then

the necessary Translator activity will be offered.

v

26

4.1.1.1 Unsoecified Passive Open (UPO)

When an UgO Petition Primitive is issued by a local TSU it is informing

the Provider that it is ready to receive, listening, from any other unnamed

remote TSU. _he local TSU provides its source port and optionally lists

its timeout period, timeout action taken, its precedence allowed, and its

security range.

TP4 service primitives do not support a generic passive listening status,

so nothing will be petitioned to the Provider by the Translator as a result

of the issuance of an UPO by the origin TSU. However, the Translator will

be responsible to register the Origin TSU as being in an UPO status and

listen to the Provider for any other Target TSU desiring to communicate.

The optional data listed will need to be recorded into a status table for

later application. The Origin TSU expects an OID Reaction Primitive which

is the responsibility of the Translator to initiate and send.

4.1.1.2 Fully Specified Passive Open (SPO)

When a SPO is issued by a local TSU it is informing the Provider that it

is ready to receive, listening, from a named remote TSU. The local TSU

provides its source port, destination port, destination address and

optionally lists its timeout period, timeout action taken, its precedence

allowed, and its security range.

TP4 service primitives do not support a similar passive specific listening

status, so nothing will be petitioned to the Provider by the Translator as

a result of the SPO. The Translator will be responsible to register the

Origin TSU as being in an SPO status and listen to the Provider for the

named Target TSU desiring to communicate. The optional data listed will

need to be recorded into a status table for later use. The Origin TSU

expects an OID Reaction Primitive which is the responsibility of the

Translator to initiate and send.

4.1.1.3 Active Open (ACO)

When an ACO is issued by a TSU it is informing the Provider that it desires

to initiate a connection with a named remote TSU. The local TSU provides

its source port, destination port, destination address and optionally lists

its timeout period, tlmeout action taken, its precedence allowed, and its

security range just as in the SPO. The difference with this open primitive

is that it is asking if the named Target TSU has issued a UPO, a SPO or an

ACO with it as the destination.

TP4 service primitives support a named active open status, so a CNRQ will

be petitioned to the Provider by the Translator as a result of the ACO.

The Translator will be responsible to register the TSU as being in an ACO

status and issue the CNRQ to the Provider for the Target TSU. The optional

data listed will need to be recorded into a status table. The Origin TSU

first expects an OID Reaction Primitive which is the responsibility of the

Translator to initiate. Then, it expects to receive either an 0FA or an

OSC depending on the status of the named Target TSU.

27

The Translator will need to issue a CNRQ to the Provider providing the

called address, calling address, and provide a reset optional expedited

data flagr llst the QOS desired, and not provide any user-data. The QOS

parameter must be either default or modified depending on the requesting

TSU optional _ata in the AC0. There will need to be an address mapping

accomplished to convert the TCP/IP addresses into TP4 addresses.

4.1.1.4 AGtive O_en With Data (AOD)

When an AOD is issued by a TSU, it is informing the Provider that it

desires to initiate a connection with a named remote TSU and has data that

should be sent along with the request. The origin TSU provides its source

port, destination port, destination address and optionally lists its

timeout period, tlmeout action taken, its precedence allowed, and its

security range. The difference between this primitive and the ACO is that

the AOD is asking if the named Target TSU has issued a UPO, a SPO or an AC0
with it as the destination and has user-data to be transmitted during the

request.

TP4 service Primitives support a similar named active open status with

data, so a CNRQ will be petitioned to the Provider by the Translator as a

result of the AOD. The Translator will be responsible to register the TSU

as being in an AOD status and issue the CNRQ to the Provider for the Target

TSU. The optional data listed will need to be recorded into a status

table. The Origin TSU first expects an 01D Reaction Primitive which is the

responsibility of the Translator to initiate. Then it expects to receive

either an OFA or an OSC, depending on the status of the named Target TSU.

The Translator will issue a CNRQ to the Provider providing the called

address, calling address, and provide a reset optional expedited data flag,

llst the QOS desired, and provide the user-data. The QOS parameter must be

either default or modified depending on the requesting TSU optional data in

the AOD. There will need to be an address mapping accomplished to convert

the TCP/IP addresses into TP4 addresses.

4.1.1.5 SeDd (SND)

This petition is the Petition Primitive that causes user-data to be

transferred across an already named connection. The SND will provide the

local connection name, the user-data it wishes to send and the length of

the user-data. Two flags, the PUSH and URGENT flags can be set or reset.

The PUSH flag indicates to the Provider to not wait for any more data to

fill a buffer, but to transmit all user-data up to and including this block

now. The URGENT flag is for the destination to be aware of the fact that

the sending TSU h_s marked this data as urgent. This would relate to a

prior agreed upon signal between the two TSU's. Also optionally included
is the tlmeout window and action requested by the TSU in case of tlmeout.

The Translator will issue a DARQ to transmit the user-data to the Provider,

or eventually the Target TSU. The Translator will not need to react to the

PUSH option because the TP4 protocol sends out data grouped into octe_

blocks. The basic service Primitive DARQ does not include a block length.

28

4.1.1.6 Allocate (ALC_

The ALC petition is an explicit flow control procedure that reports to the
Provider the amount of data in octet units that it is willing to accept.

It is an incremental count.

The Translator using TP4 has a similar explicit flow control by defining

the Quality Of Service (QOS) for the TC as observed between the endpoints.

There is a loosely defined, multifunctional set of parameters that are used

during TC establishment. A combination of message buffer storage by the

Translator (unacknowledged, however) and QOS selection would be necessary

to supply the TSU with the correct reaction to the ALC Petition Primitive.

4.1.1.7

With the CLS Petition Primitive the TSU is reporting to the Provider that

it has completed the user-data transfers across the TC and wishes to

terminate the TC. With a CLS, the termination is not immediate. If there

is message traffic from the Target TSU then the TC is maintained so that it

is allowed to complete the current message before terminating the TC.

TP4 does not allow for a similar event, in that it can only immediately

issue its DSRQ and the TC is abruptly terminated. To maintain the graceful

closing procedure as in CLS it is necessary for the Translator to delay

sending the terminate (TRM) until the completion of the current receive

message (if one exists). Upon receipt by the TSU of the current message,

a DSRQ can be issued to the Provider to terminate the TC.

4.1.i.8 Abort (ABT)

The issuing of an ABT by the TSU is a request which can not be denied and

it has an effect to immediately terminate the TC. Data may be lost in

transition.

The Translator will advance a DSRQ without delay to the Target TSU which

will terminate the TC immediately.

4.1.1.9 $_@t9s (STT_

This petition allows the TSU to obtain status of the named connection.

The Translator is required to issue a STR to the origin TSU. The

information attached to the STR will have been maintained locally by the

Translator.

4.1.2 TCF Translator Reaction Primitives

In the discussion of the TCP Petition Primitives, the Reaction Primitives

were presented as they were the required responses for the Translator.

This discussion will repeat some of that information in this context, but

will also be presenting the conditions necessary for the Translator to

issue the service Reaction Primitive listed.

29

4.1.2.1 OPen ID (OID_
o

Through this Reaction Primitive, TCP normally informs the TSU of the local

connection name assigned by TCP to the connection requested in one of the

previous service Petitions, USO, SPO, ACO or an AOD. TCP is required to

provide at least the following information:

a.

b.

C.

d.

Local connection name

Source port

Destination port [if known]
Destination address [if known]

Upon receipt of the USO, SPO, ACO, or AOD petitions the Translator provides

to the TSU the local connection name for the TC requested. In the cases of

USO and SPO, registration of the TSU under the local connection name

assigned occurs, and a change to the listening state by the Translator

follows. In the case of ACO and AOD the Translator will be required to

attempt to open a connection to the Target TSU. This is accomplished

through the Translator by issuing a CNRQ to the Provider using the

correctly mapped TP4 address to the Target TSU.

4.1.2.2 OPen Failure (OFA)

This service Reaction Primitive is sent to inform a TSU of the failure of

an ACO or ACO service Petition Primitive. TCP normally would provide in

an OFA at least the local connection name.

In response to ACO or AOD Primitive the Translator must provide to the TSU

an OFA Reaction Primitive to indicate that the Provider was unable to

provide a TC to the Target TSU. The Translator will have received a DSIN

from the Provider as a reaction to an earlier CNRQ petition in order to

issue the OFA.

4.1.2.3 Ooen Success (OSC)

This service Reaction Primitive is sent to inform a TSU of the completion

of one of the open service petitions. TCP would normally provide in an

OSC at least the local connection name.

In response to USO, SPO, ACO or AOD Petition Primitive the Translator must

provide to the TSU an OSC Reaction Primitive to indicate that the Provider

was able to provide a TC to the Tarset TSU. The Translator will have

received a CNCF from the Provider as a reaction to an earlier CNRQ petition

in order to issue the OSC.

v

3O

4.1.2.4

Using this-service Reaction Primitive, TCP informs a TSU of the arrival of

data across the named connection. TCP would normally provide in a DLV at

least the following information:

a. Local connection name

b. Data

c. Data length

d. URGENT flag

When the Translator receives user-data from the Provider through a DAIN it

forwards the data to the TSU with a DLV Reaction Primitive. In the TP4

Primitives established, there is no way for the Translator to be aware of

the setting of the Urgent flag or the data length transmitted by the

sending TSU. The URGENT flag and data length would be lost without a

Translator to Translator mechanism to report the request. The URGENT flag

is a higher level indication, and no action is taken by TCP when it is

present, therefore it can be ignored without impact in the communications
environment. The Data length value can be regenerated by the Translator,

so it does not need to be communicated across the network.

4.1.2.s

TCP uses the CLG Reaction Primitive to inform a TSU that the remote TSU

has issued a CLS service Petition. Also, TCP has delivered all data sent

by the Target TSU. TCP provides in a CLG, at least the local connection

name.

The CLG will never be sent to the TSU from the Translator because TP4 does

not support the CLS Reaction Primitive.

4.1.2.6 Terminate (TRM)

This service Reaction Primitive informs the TSU that the named connection

has been terminated and no longer exists. TCP normally generates this

response as a result of a remote connection reset, service failure, and

connection closing by the local ULP. TCP provides in a TRM at least the

local connection name and description of why the TRM was issued.

The TRMwill be issued to the TSU from the Translator whenever it receives

a DSIN from the Provider.

4.1.2.7 Status Resoonse (STR)

The STR Reaction Primitive returns to a TSU the current status information

associated with a connection named. TCP normally is required to issue a

STR to the TSU providing the following information to the TSU:

a.

b.

c.

Local connection name

Source port
Source address

31

d.

e.

f.

g.
h.

i.

j
k.

I.

m.

n.

Destination port

Destination address

C_nnectlon state

Amount of data in octets willing to be accepted by the local TCP
Amount of data in octets allowed to send to the remote TCP

Amount of data in octets awaiting acknowledgment

Amount of data in octets pending receipt by the local ULP

Urgent state

Precedence

Security

ULP timeout

All of the listed items except item I. are available to the Translator from

TP4 entity or previous TSU interaction using the Primitives and stored

table data available. The value of item i. will need to be tracked by the

Translator in its interaction with the Provider.

4.1.2.8

This service Reaction Primitive informs the TSU of illegal service

petitions relating to the named connection or of errors relating to the
environment. TCP uses this Primitive to provide an error reaction to the

TSU Reaction Primitive providing at least the local connection name and a

method of providing the error description.

The Translator is responsible for generating and submitting to the TSU the

ERR Reaction Primitive.

4.2 Translator and Provider Relationship Analysis

This chapter discusses the various elements of each Petition Primitive and

Reaction Primitive that exists in a conforming TP4 service interface set.

The section also presents the proceedings necessary within the Translator

to accomplish the primitives identified. The Translator uses TCP service

primitives to bring about the desired operation with the TCP TSU. This

section describes the events that occur both ways across the interface

between the Translator and Provider based on initiation of interaction by

the occurrence of a Provider TP4 Reaction Primitive. The Translator to

Provider direction, the Provider TP4 Petition Primitives, will be presented

first. This will be followed by the Provider to Translator direction,

based on initiation of activity by the Provider TP4 Reaction Primitives.

4.2.1 TF4 Provider Petition Primitives

Service Petition Primitives cross from the Translator to the Provider.

There are five Petition Primitives that need to be considered.

4.2.1.1 T-CONNECT Reuuest (CNRO)

The calling TSU invokes this primitive to establish a TC. The TSU

specifies the destination address, its desired QOS, and its desire for the

32

use of expedited data service, along with the possibility of sending user-

data.

w

The Translator will issue a CNRQ to the Provider upon receiving an ACO or

an AOD from t6e Origin TSU. The Translator will never issue the expedited

data service request to the Provider, but it will include user-data if an

AOD was received from the TSU.

4.2.1.2 T-CONNECT Response (CNRS)

The called TSU invokes the CNRS Petition Primitive to tell the initiator

that it is willing to establish a TC. The called TSU may optionally

transfer a limited amount of user-data with this primitive or indicate the

expedited data option or both. It includes its address and QOS agreement.

The Translator will issue a CNRS to the Provider when It receives a CNRQ

from the Provider if the called TSU has previously issued an UPO, a SPO,

an ACO, or an AOD where the specified address is the Target TSU.

4.2.1.3 T-DATA Reouest (DARO)

The TSU uses this primitive to inform the Provider of a desire to transmit

user-data.

The Translator will issue the DARQ to the Provider upon receipt of a SND

from the Origin TSU.

4.2.1.4 T-EXPEDITED-DATA Reouest (EDRO)

The TSU uses this primitive to indicate to the Provider that it wishes to

send expedited data on a Transport connection. The connection must have

been established with expedited data usage negotiated. Expedited data is

queued ahead of previously sent messages.

Since TCP does not support expedited-data, the Provider will not be called

upon to provide this service. Hence, during the negotiation of service,

the Translator must not request expedited data usage. The Origin TSU must

concur with the Translator's request to omit that service in the standard

set of conforming procedures. Therefore, no changes are necessary at the

TSU when this service is denied.

4.2.1.5 T-DISCONNECT Reouest (DSRO)

The TSU calls this function either to disconnect an established Transport

connection or to refuse an incoming connect indication. User-data may

optionally be included in the primitive.

The Translator will issue the DSRQ to the Provider upon receipt of a CNRQ

for a TSU that is not in the correct state, upon receiving an ABT from the

TSU, or upon receiving a CLS from the TSU. In the case of the CLS, all

outstanding messages must be acknowledged before the DSRQ is issued, but it

will not accept more message traffic from the TSU for that named TC.

33

4.2.2 TP4 Provlder Reaction Primitives

Five Reaction Primitives enable TP4 to inform the TSU of user connection

status, data _ellvery, and connection termination. Once again it will be

the Translator's responsibility to convert the TP4 Reaction Primitives from

the Provider, and issue correct TCP Reaction primitives to the TSU or TP4

Petition primitives to the Provider depending on the situation.

4.2.2.1 T-CONNECT Indication (CNIN)

The Provider uses this primitive to communicate to the TSU that a

connection is being requested. The Provider specifies the address, whether

expedited traffic is exercisable, the QOS, and possibly some user data.

The Provider receives this primitive to indicate that an Origin TSU wants

to establish a TC with a Target TSU. The Provider will respond to the

translator with a CNRS or DSRQ depending on the state of the Target TSU.

4.2.2.2 T-CONNECT Confirm (CNCF)

The Provider uses this primitive to communicate to the TSU that a

connection has been completed. The address of the called TSU, and the QOS

agreed upon are included as parameters, and optionally the status of the

expedited data option and TSU user-data.

When the Translator receives a CNCF from the Provider, it will issue an OSC

to the Origin TSU.

4.2.2.3 T-DATA Indication (DAIN)

The Provider uses this primitive to notify the TSU that data has been

received on the connection.

The Translator will issue a DLV to the TSU.

4.2.2.4 T-EXPEDITED-DATA Indication (EDIN)

TP4 uses this primitive to notify the TSU that expedited data has been
received on the connection.

Since the TCP/IP does not support expedited traffic as explained in

4.2.1.4, the Translator will not ever receive a EDIN because the Origin TSU

Translator will never accept an EDRQ.

4.2.2.5 T-D_SCONNECT Indication (DSIN)

The Provider issues this primitive to communicate a disconnect indication

to the TSU. The disconnect reason is included with the option of

including user-data.

34

The Translator will issue an ABT to the TSU. If data is included the

Translator must first issue a DLV, and then the ABT.

4.3 Translator Seauenced _nterchan_e Model

The Translator uses the Petition and Reaction Primitives for the functions

of establishing, maintaining and releasing transport connections. This is

achieved for any TCP TSU over the TP4 based network. The following

sequences of transport level service primitives are the ordered procedures

required to achieve the previously listed activities for the TCP/IP

networks found in Chapter 2. These sequence items are required in the

TCP/IP model, therefore they will be the driving functions that will be

translated and supported on the TP4 network using the TP4 primitives.

AC0>I

<0ID

<OSC

CNR0>

<CNCF

CNIN>

<C_RS

<WO

OID>

OSC >

FIGURE 4-1. SUCCESSFUL TRANSPORT CONNECTION ESTABLISHMENT (PASS OPEN)

35

ACO>

<_9._

<oscl

FIGURE 4- 2.

CNRO>

<CNCF

OSC>

SUCCESSFUL TRANSPORT CONNECTION ESTABLISHMENT (SPEC OPEN)

CNRO>

CNIN>

<DSRO

<_RF_

FIGURE 4-3. REJECTION OF TRANSPORT CONNECTION ESTABLISHMENT (NOT OPEN)

36

ACO>

<OID

<OFA

c

CNRQ >

<_AXR_

<SPO

01D>

FIGURE 4-4. REJECTION OF TRANSPORT CONNECTION ESTABLISHMENT (PROVIDER)

SND>

DAR0>

DAXN>

DEL>

FIGURE 4-5. NORMAL DATA TRANSFER

37

ALC>I
I

I I I
l J I
i I I

FIGURE 4-6. TRANSPORT SERVICE PETITION TO PROVIDER

CLS>

DSRO >I

DSIN>

TRH>

FIGURE 4-7. GRACEFUL CLOSE BY USER

ABT >

DSR0>

DSIN>

FIGURE 4-8. ABRUPT CLOSING BY USER

38

STT >

<LTA_

FIGURE 4-9. TRANSPORT SERVICE USER TO PROVIDER

FIGURE 4-10. PROVIDER TO TRANSPORT SERVICE USER

39

5.0 PROOF-OF-CONCEPTDEMONSTRATIONCODE
V

t

The initial phase of the research involved the theoretical investigation

using standards, procedures, and generating abstract primitives for use in

a Translator model. The goal was to determine whether an interface for

TCP/IP application users could be provided that would allow TCP/IP based

applications to operate across an OSl/CCITTbased network. As was shown in

prior sections of this report, a theoretical Translator model was produced

which revealed that an actual coded TCP/TP4/TCP Translator could be

generated. The following sections detail SwRl's efforts towards actually

implementing the TCP/TP4/TCP Translator and the degree of success

accomplished with this effort. This chapter is an outline of this work and

should be understood that it was completed to prove out the concept on a

real network.

The appendices contain the SwRI developed code and several of the test

programs that were used in the development process. The following sections

outline in fine detail the efforts that were required to complete the

verification process. It is hoped that the general research information of

the earlier chapters and the details of this specific implementation in

this chapter will together provide the necessary guidance for a developer

who is attempting to solve a similar problem. The sections will generally

be presented in a chronological order as the tasks were actually

accomplished.

5.1 Initial tasks

The first step toward implementing the Translator was obtaining the

specific system software and hardware elements which were supporting the

target network, the NASA/JSC GPLAN. This phase of the project was

necessary so that the modeling and testing would be run on an off-line

replica GPLAN network (one active llnk between two workstations) which

would eliminate development and operational conflicts with the MCC

=hroughout the process. This effort can be also be a source of problems,

because as the translator is developed, the replica network must continue

to roll with the revisions and activities on the actual network. Also,

since the HCCU workstations are under configuration management, development

at NASA would have caused additional slow down problems. The tradeoff in a

mission critical environment like NASA's, however, makes a replica network

experimentation procedure mandatory.

5.1.1 RTU Network Source Code

The source code for the network was needed to support the replica as well

as to be the target of the modifications. The first problem seen once the

source code was obtained was that the C language interface to the TCP/IP

services of the operating system, called Real Time Unix (RTU), does not

always directly correspond to the primitives of the TCP specification. In

some cases, there was a one-to-one relationship between the standard's

primitives and RTU services, but in many cases this was not true. The

standard primitive was eventually accomplished through several RTU

40

processing steps. The RTU TCP/IP network software source code provided

valuable information, although often in a cryptic fashion, into the

implementEtlon of the TCP specification.

At the outset of this research, one possible option was to insert the

Translator into the RTU kernel (inside the operating system). In RTU, and

in Unlx in general, the TCP/IP services provider software resides in what

is referred to as the operating system's kernel. One of the possible

options of implementing this research was to replace the TCP/IP services in

the RTU kernel with the Translator. This option was eventually rejected

for several important reasons. Section 5.2.2.1 provides a complete

discussion of the advantages and disadvantages of an "In-kernel"

Translator.

The RTU RTnet-TCP network software version 2.4 source code was being used

as the basis for the TCP/IP network activities. It is owned by Concurrent

Computer Corporation and the research was conducted through a nondisclosure

agreement between Concurrent and SwRI. Because of this, only the SwRI

source code is available for publication in the appendixes of this report.

The SwRI software interfaces are documented well enough that individuals

can understand the processes occurring without revealing the Concurrent

code or knowledge to the workings of their code. However, straight forward

SwRI software modifications to their code are not provided in the appendix

because the changes may provide unnecessary insight into the proprietary

code. These modifications are unique to this source code and is of little

general application use. With some thought, they can be duplicated by

those who properly hold the source code. The RTU operating system is based

on the BSD Unix source code which is readily available from the University

of California at Berkeley.

5.1.2 GPLAN Software

NASA/JSC currently uses an IBM implementation of commercially obtained OSI

ISO based software for the MCCU GPLA/_. Obtaining the IBM modlflcation's

and their unique implementation of the software was also required. This

was accomplished through a nondisclosure agreement established between

NASA/JSC and IBM. Therefore, once again, no specific details of the IBM or

the commercial software source code, or SwRI modifications could be

revealed in this report. As above however, the SwRI translator's concepts,

the Translator code, and the test functions are clearly documented, hence

the specific commercial code information is unnecessary to follow the

conclusions of this report.

5.1.3 GPLAN Hardware

At this point in the Translator development, efforts were expended in

establishing the hardware replica GPLAN network llnk. The interface

hardware boards, again commercial proprietary, that support the NASA MCCU

most current version of the GPLAN segment were obtained and installed.

41

5.1.4 ReDllca GPLAN Link

Upon obtaining the required software and hardware components, the next task

was the combi_atlon of the components into a working replica GPLAN link.

The replica GPLAN link was established between a NASA owned, but located at

SwRI, Masscomp 6600 workstation and an SwRl owned Masscomp 6350. The

replica GPLAN llnk was situated between the two physically separated

workstations to assure the Translator would be tested using TP4 and all

software and hardware below TP4 that makes up the network. This insured

that the Translator actually operated properly across the "ISO/CCITTwire,"

and was not simply a contrived software situation.

5.1.4.1

The fist stage required to establish the replica GPLAN llnk was the

installation of the Lower Level Communication (LLC) driver on the two host

computers. The LLC driver provides the RTU interface to the Ethernet

boards. This process was completed with the help of FACC, to make

modifications to the LLC driver so that i= would work properly in the SwRI

unique Masscomp 6350. This particular fix was unique due to the different

equipment units that were belng used, and is not related to the Translator

design process.

5.1.4.2 WEX-less GPLAN

The second stage in the establishment of a replica GPLAN llnk was the

building of the IBM GPLAN software to work in a "WEX-Iess" environment.

Neither of the Masscomp hosts used in the development and testing of the

Translator used the NASA WEX environment. The GPLAN software was

successfully built and an operating WEX-less replica GPLAN link was

established between a Masscomp 6600 and a Masscomp 6350 at the SwRI

facility. The GPLAN segment was verified using the IBM GPLAN Workstation

Network Test Facility.

5.2 TCP/TP4/TCP Translator Code

Once the GPLAN software was built and the GPLAN segment was operational,

development of the Translator was able to progress. The development of the
Translator consisted of three main tasks:

I) The development of an interface to the TP4 daemon

2) The development of the Translator daemon

3) The development of the C language interface

These tasks are discussed in detail in sections 5.2.1, 5.2.2, and 5.2.3.

5.2.1 Interface to TP4 Daemon

The first software task in the development of the Translator was the

development of an interface to the TP4 daemon, the serving object for the

42

v

ISO/CCITT network. The Translator model specified that the Translator

should access the ISO protocol stack at the TP4 level. The standard

Session layer interface to the TP4 daemon was used as a guide for

developing the Translator interface to TP4, but the Translator's function

is different than that of the Session layer. The Session layer serves as

an intermediary between the Presentation layer software which sits above

the Session layer and Transport layer, which sits below it. The Translator

however must act as an end user of TP4, so a new TP4 interface library was

developed which contained only the portions of the Session layer which were

required.

The library which provides the interface to the TP4 daemon for the

Translator grew significantly during the development. As the Translator

test programs increased in utility and complexity, the requirements of the

interface to the TP4 daemon increased in its utility and complexity. This

increased complexity can be seen in the modifications which were necessary

to support multiple VCs for a single process.

5.2.1.1 Initial Prunin_

Development of the Translator library required the building of the

necessary functions, and deleting the unnecessary ones, associated with the

Session layer responsibilities of the ISO model. Since only the TP4 daemon

interface was needed, the following Session layer functionality was trimmed

while building the new library:

l)

2)

3)

Session layer state transition functions,

MAP 3.0 network management interface functions, and

Timer functions and spawn of "sesstlme" program.

Only the portions of the Session library which provide the interface to

the TP4 daemon were transferred in the new SwRI library functions. This

library remains for the most part consistent with the methodology used in

the Session library. The modifications that were necessary are detailed in

following sections. The effort to maintain the methodology contained in

the Session library was done to ensure compatibility with future versions

of the IBM TP4 daemon and other GPLAN software as the future versions were

rolled in. The scaled down TP4 daemon interface library is contained in

libtp4_if.a. The C language source files and the Makefile for the

Translator TP4 daemon interface are contained in the /Lan/Translator/TP4

subdirectory.

5.2.1.2 Multiple TSAPs in a Single Process

During the implementation of the RTU TCP/IP network programs it was

determined that the interface to TP4 would need to be modified to support

multiple Virtual Circuits (VCs) in a single program. Many of the RTU

TCP/IP network programs use two simultaneously established sockets (based

on the VCs). One socket is used to transfer commands and status

information, and the other socket is used to transfer the raw data. The

RTU network program remote login (rlogin) is an example of one of the

programs that requires two VCs. However, and seemingly contrary to the

43

standard, the Session layer interface to TP4 and the LAN daemon did not

support the usage of two VCs between a single Session layer program and the
TP4 daemorr.

With some outside consultations with the original code writers, SwRI was

able to make the modifications to the Translator TP4 daemon interface to

support multiple VCs.

5.2.1.2.1 Message Oueue IDs and Registration

The TP4 daemon receives requests and returns status to the Session layer

via Unix message queues. The TP4 daemon maintains a message queue for each

of the VCs, and each message queue is referenced by a unique identification

number. In the IBM implementation, the message queue ID used was the Unix

process ID. The scheme works for cases where only a single process uses a

single VC. In the case where a process has multiple VCs, a different

unique identifier must be established for each VC, and this was not

supportable. In the TCP/IP protocol, the port number uniquely identifies

the VCs, so it was determined that the VC port number should be used as the

message queue identification number.

The use of the VC port number as the message queue identification number

necessitated several changes to the TP4 daemon interface. The routines

which establish connections to the TP4 daemon now had to determine a unique

port number and to pass this port number to the routines which allocate and

initialize the Unix message queue. Previously, the routines which

allocated the message queues determined the process id via a Unix system

call. In other words, the routine which called the message queue

allocation routines did not need to pass in the message queue

identification number. It was determined locally each time from the

standard Unix information.

To support the use of the port number and the message queue identification

number, the calls to the routines init_sesslon() and inlt_squeue() were

modified to contain the additional port number variable.

5.2.1.2.2 gv_nt Oueues

The TP4 daemon interface maintains a queue of the events that are returned

from TP4 during processing. With the single VC scenario, this event queue

could be declared globally within a single process. In a multiple VC

scenario, multiple event queues were required to be instituted. When a

connection is established from one TSU to another TSU, TP4 returns an event

which contains a machine pointer (labeled machp). This pointer is

determined by TP4 and is used by TP4 to identify each of the VCs that it is

currently servicing. Subsequent calls to the TP4 daemon after connection

establishment must contain this unique machp so that TP4 can determine for

which VCs the request was made. Transport Service Users send events to the

TP4 daemon via a single queue, so machp can be used by the TP4 daemon to

determine for which of the VCs the event is targeted.

44

I

Multiple VCs could be maintained in a single event queue once a

relationship is established between the TP4 machp and the corresponding VC.

Unfortunately, during connection establishment the machp and VC

relationship does not yet exist. If a process establishes two VCs at the

same time, th_ process cannot determine which VC is established by TP4 on

the basis of the information in the connection event structure. For this

reason, multiple VCs within a single process require instituting multiple

event queues.

The addition of multiple event queues to the TP4 interface library required

that many of the calls to the interface routines also include an event

queue pointer. These routines were modified to contain the proper event

queue pointer.

5.2.1.2.3 TRANslator Daemon

The Session layer interface uses the process identification (pid) to

identify its various resources, such as message queues. These resources

are registered during their allocation with LANdaemon, which periodically

ensures that resources which are active belong to processes which have not

terminated are released back to the Operating System. One of LANdaemon's

function's is to serve as the housekeeper for resources. LANdaemon

reclaims resources (message queues, shared memory segments, semaphores,

etc.) which are left active by terminated processes. One of the impacts of

allowing multiple VCs, is that the TP4 interface routines can no longer use

their pid to identify their resources. Therefore these resources could no

longer be registered with LANdaemon. For this reason, and several others

which are discussed in later sections, a Translator equivalent to LANdaemon

was created.

The TRANslator daemon, or TRANd, was created to perform the resource

housekeeping previously performed by LANdaemon. The resources used by the

interface to TP4, especially message queues, are usually not in abundance

and it is important that they be reclaimed as quickly as possible. The

TRANd operates slightly different than the LANdaemon. The LANdaemon

registers resources on a process basis. The TRANd registers resources on

a File Descriptor basis due to the Translator's requirement to act like a

TCP/IP type socket handler. In the Unix TCP/IP implementation, sockets are

maintained within the kernel as standard file descriptors and these file

descriptors can be shared between many processes. This necessitated that

the TRANd allocate and reclaim resources on a file descriptor basis instead

of the process basis which is used within LANdaemon.

5.2.1.2.4 Multiple VC Demonstration

The multiple VC capability of the Translator TP4 daemon interface has been

demonstrated using two test programs: recv2 and send2. These two programs

work in tandem to open two sockets and then alternately transfer data

across the two sockets. The complete listings for the test programs recv2

and send2 can be found in the appendices.

45

5.2.2 C lan_ua2e llbrarv of TCP calls

Once an LDterface library to the TP4 daemon was organized and coded,

development of the actual Translator library routines could begin. The

Translator library has to contain a one-to-one functional replacement for

each of the C language TCP/IP functions that is available to the user

within the RTU operating system. The Translator is designed to

transparently replace the TCP/IP network functions with new functions that

use similar TP4 instructions, or combinations of TP4 instructions, out of

the TP4 instruction set as the transport level protocol. Once this Is

accomplished, as was shown in the theoretical development, the RTU TCP/IP

network programs, or any TCP/IP socket based program, could begin to

operate across the ISO based GPLAN without modification.

5.2.2.1 In-kernel vs External Translator

It was originally proposed that the Translator would either replace or

augment the TCP/IP services of the RTU kernel. The concept was that if the

Translator were placed within the RTU kernel, then any TCP socket based

program would operate across the GPLAN without any modifications.

Investigation of the RTUTCP/IP network software source code confirmed =ha=

this approach was a feasible research approach. That is, since the RTU

TCP/IP functions were already linked into existing applications, they only

contained a subroutine call to enter the RTU kernel. With this approach,

little work is required to be done outside the kernel. Figure 5-1 is a

flow diagram that illustrates the interaction.

TCP/IP User application ---> TCP function >

I
(kernel entry]

point only) RTUkernel

I
I

TCP/IP User application <--- TCP function <

(values returned

from kernel are

returned to

application unmodlfied)

FIGURE 5-1. TCP FUNCTION TO RTU KERNEL FLOW.

This condition makes the kernel replacement of the TCP/IP functions

feasible. If the TCP/IP functions contained more than the kernel entry

point, then the applications which used the new kernel would have to be

relinked with the replacement routines. Being feasible does not mean that

it is appropriate. The same rational that determined the internal

translator was feasible, yields the conclusion that a translator external

46

to the kernel, but providing the TCP/IP replacement of the kernel, is also
feasible. The advantages and disadvantages of each research strategy had

to be scrutinized before the final design could be established and the

implemented code generated.
=

5.2.2.1.1 In-ke_nel Advantages

There are several advantages in using an in-kernel Translator. First, an

in-kernel Translator allows the TCP/IP based programs to operate over the

ISO network with no modifications by the users. The same program

executables which are used across the current TCP/IP network could operate

through the ISO TP4 kernel without recompiling or relinking. This is a

step more than the no software changes assumption, this means no action of

any kind is necessary by the TCP/IP user community to utilize the

translator. The internal kernel also allows standard input/output "stdio"

and standard error "stderr" reports to be redirected over a socket because

the redirection occurs within the kernel, and the external Translator can

not simulate this function.

Second, the in-kernel Translator would most probably offer higher

performance than would an external Translator. The in-kernel Translator

would operate as part of the RTU operating system. As part of RTU, the

process could operate with the execution privileges of the operating system

instead of the standard execution privileges assigned to user processes

that the external Translator would have.

Third, a Translator residing internal to the kernel would also mean that

the Translator data structures would reside in the kernel's protected

memory, instead of in the more volatile application memory area.

5.2.2.1.2 IN-kernel Disadvantages

The in-kernel Translator also has several very important disadvantages that

needed to be considered. First, an in-kernel Translator would be usable

with only the specific hardware and RTU operating system software release

with which it was developed. For example, an in-kernel Translator developed

for the Masscomp 6600 RTU release 4.1A could not be used on any hardware

other than a Masscomp 6600 and it must use that specific release of RTU

software. The Translator kernel would require modifications to be

integrated into another workstation or another Masscomp 6600 running a

different version of RTU. Further, when the next release of RTU following

version 4.1A is desired, extensive modifications to support the Translator

may have to be accomplished in the new version. This is in fact the case

for the next RTU version 5.0 because the new kernel is fully symmetrical

and contains support for Streams which was not true of RTU 4.1A. Whenever

work in the communication area occurs, the Translator would be in danger of

having untested and inconsistent interactions with the RTU code. As the

operating system internals are changed, the Translator would require

revision. Therefore, an external Translator is consequently more portable

to other hardware platforms and other versions of the RTU operating system.

In fact, the external Translator developed has been demonstrated with two

different versions of RTU and with two different types of Masscomp

47

workstation systems. Specifically, the Translator is currently operating

on a VME based Masscomp 6350 running version RTU 4.1A and communicating

with a MULTI-BUS based Masscomp 6600 running version RTU 4.0.

Second, the TP4 code is already an external application to the kernel.

Therefore an exit from the kernel to the TP4 application is necessary after

the internal translation occurs. This leads to the conclusion that an

external Translator is the natural operation domain for the TPA

applications.

Third, an in-kernel Translator also imposes a less favorable development

environment. To place the Translator in the kernel, the kernel object

files must be linked with ocher object files which compose the programs

which is the kernel. This process is considerably more time consuming than

the development of an external kernel which appears as Just another

application program. The entire set of files that composes the "/unix"

program that makes up the kernel would require recompillng and testing.

Fourth, In-kernel development would most probably render the development

machine unusable to other developers while the Translator development is in

progress. This would be due to the large number of times that the machine

would be not be available during the rebootlng of the new operating system

and the testing process that would be required during each version. Also

the other users could be impacted by inadvertent coding errors introduced

during the Translator development.

For the reasons stated above, it was determined early on that it would be

in NASA's best interest to develop an external-kernel Translator. The

Translator was prototyped and demonstrated as a library of TCP/TP4/TCP

routines which could be linked with any TCP/IP socket based C language

program. The source code and object files of the TCP/IP program require no

modification to use the Translator. The completed object files of the

program need only to be rellnked with the Translator.

5.2.3 Translator Library

The Translator library generated is contained in the Unix library file

called "llblso.a". This library is linked with a TCP/IP socket program.

The Translator library is composed of all the standard TCP/IP network

functions. The source files for the Translator library routines are

located in the "/Lan/Translator/translator" directory. A review of the

source files will show that a replacement for all of the TCP/IP network

functions exist with the same calling sequence as the RTU C language

version of the network functions. Figure 5-2 given below establishes the

relationship of the model to its functions and the actual subroutines used

to complete the action.

-v

48

The translation from TCP/IP to TP4 is performed within the Translator
library routines. As seen in Figure 5-2, the Translator library routines
perform th_ following functions:

i) Establlsh a connection to the TP4 daemon and establish a

shared memory segment which is used to transfer data to/from

the TP4 daemon.

2) Establish a TP4 connection to another Transport Service User.

3) Transfer data from one TSU to another.

4) Close a Transport connection.

Model DescriDt%o_ TCP/IP

Active Open Actively establish socket()
a connection

Passive Open Passively open a

connection waiting

for an active open

connect()

ISO T_anslator

LANmat()

Init_buffers()

init_session()
TSUadd()

UCONreq()

socket() LANmat()

inin buffers()

bind() build TSAP/NSAP

listen() init_session()

TSUadd()

accept() connection wait
check TP4

queue()

UCONres()

Send Send data send() UDATreq()

Receive Receive data recv() UDATrcv()

Close Close a connection shutdown() TP4_msg(_DISRK_)

Abort Abort exit() TP4_msg
(DEACTIVATE)

Status Get conne c tion ge tsockname () Provided locally

status ge tsockop t () Provided locally

FIGURE 5-2. MODEL AND CODE RELATIONSHIPS

The Translator library also contains a replacement for several routines

which are not normally associated with the TCP/IP network functions. These

functions are required as a result of the way in which TCP/IP connections

are managed within Unix and RTU. TCP/IP socket connections are maintained

49

via the standard file descriptor mechanism used in Unix. File descriptors

are typically used to read and write files, and to read and write standard

Input/output (stdlo) and standard error (stderr). Unix and RTU maintain

and reference TCP/IP socket connections via the file descriptor. As a

result, all the functions which are typically associated with managing

files by means of the file descriptor, must also be implemented in the

Translator library. A survey of the Translator library will show that the

C language functions such as: read(), write(), dup(), exit(), and fcntl()

are implemented. These functions are not typically associated with TCP/IP

functions. For example, the following functions are implemented in the

Translator library, primarily due to the management of sockets via the file

descriptor:

The Translator contains a replacement for the exit() function. This

function is used to terminate a program, and is not normally associated

with TCP/IP sockets. One of the functions of exit() is to close and

flush all file descriptors. As a result, a replacement for the exit()

function was written which closes all of a program's TP4 connections.

The Translator contains a replacement for the read() and write()

functions. These functions are typically thought of as the functions

which are used to read and write disk files. The recv() and send()

functions are the functions which are typically thought of as the

functions which are used to read and write sockets. Surprisingly,

because sockets are maintained as file descriptors, the read() and

write() functions can be used on sockets also.

The Translator contains a replacement for the fork() function. The

fork() function is used to create another executing copy of a program

while the program is executing. A feature of the fork() function is

the availability of the parent's file descriptors to the child/spawned

process. Due to the fact that sockets are maintained as file

descriptors, the child process created by a fork() can also utilize the

parent's TCP/IP sockets. As a result, a replacement for the fork()
function was also needed so the child process created by a fork() would

have access to the TP4 connections established by its parent.

5.2.4 V_rtual Circuit (VC) Addressin2

Both the TCP/IP and ISO transport level protocols contain a mechanism for

identifying/addressing a VC. In the TCP/IP protocol, a transport level
address consists of an Internet number and a port number. Figure 5-3 shows

how a VC is addressed using both the local and remote transport addresses.

v r

50

TC_/IP V C _dentifier

Local TCP/IP Address
i. Local Port

2. Local Internet Number

Remote TCP/IP Address

i. Remote Port

2. Remote Internet Number

FIGURE 5-3. TCP/IP VC IDENTIFIER

In the CCITT/ISO protocol, a transport level address is referred to by a

TSAP. The TSAP is a user defined id which is passed from the transport

service user to TP4. The Translator model requires that the ISO TSAPs

contain the same format as the TCP/IP address. This addressing scheme

works perfectly as long as the TSAP can represent any valid TCP/IP address.
And in fact, due to the number of bytes which are available to construct a

TSAP, any valid TCP/IP VC identifier can be represented. As a result, the

Translator identifies VCs by the standard TCP/IP address pairs.

5.2.5 Host AddressinE

The Translator library must construct both a valid TSAP and NSAP for the

target TSU that it wishes to connect to. Both the TSAP and NSAP addresses
contain the ethernet number of the local and remote ethernet boards. The

Translator uses a local host table to convert Internet addresses to

ethernet addresses. This host table is located in the file called

"/Lan/Config/hosts" and has the format ninternet number ethernet number

host name."

A host table file must exist on every host which uses the Translator and

this table must contain a valid entry for every host which is accessed via

the Translator. This table is used by the TCP/IP replacement routines

gethostmame() and gethostbyaddr().

5.2.6

The TRANslator daemon TRANd was developed as a result of several factors.

Primarily, the decision to not replace the TCP/IP services of the RTU

kernel with the Translator necessitated that a host level controller be

implemented. However, the modification of TP4 daemon interface to support

multiple VCs also necessitated a host level controller similar to

LANdaemon.

5.2.6.1 Replacement for LANdaemon

The Translator library routines support the simultaneous use of two VCs

within a single process. To implement this functionality, the calls to

register a Session level process's resources with LANdaemon were removed.

51

The LANdaemon is designed to use the process td to locate the message

queues and other resources of the processes that have terminated. The

Translator_ routines use port numbers to create and reference message

queues, so a replacement for LANdaemon was needed. The Translator daemon

process perfoTms some of the same functions as LANdaemon but only for

Translator linked processes and resources. The TRANd maintains a table of

processes similar to LANdaemon. If TRANd determines that a process has

terminated without removing its message queues, the TRANd removes the

message queue using the TCP/IP port numbers of each VC.

5.2.6.2 HB_tivle Translator Processes

The TRANd also allows multiple processes which use the Translator routines

to coexist in a single host. The TRANd allocates and initializes a shared

memory segment which is accessed by every Translator linked routine. The

shared memory segment maintains the state of each Translator VC for the

entire host. This allows port numbers to be assigned in the Translator

routines in the same manner as they are assigned in the TCP/IP routines.

The shared memory segment created by TRANd also allows multiple processes

to access the same set of file descriptors (sockets). This becomes

necessary during the fork() and exec() functions which may allow separate

processes to utilize the same file descriptor (socket).

5.3 _OtotyDe Results

The Translator prototype has demonstrated that a TCP/TP4/TCP translator

can be implemented. The Translator has been successfully demonstrated with

several test programs, including the Unix TCP/IP network program tftp and

its server daemon tftpserver. The Translator has been demonstrated within

a single host and across a thick segment ethernet GPLAN between two hosts.

The first test programs which were used to test the Translator and TP4

interface library were: recvtcp.c and sendtcp.c. These programs were taken

from the RTU Programming Manual and are a perfect example of how the C

language interface to TCP should be setup and operated. These programs

have been linked with the Translator and demonstrate that a TCP/IP based

program can be operated over an ISO based network with no modifications.

The second set of test programs which were implemented were the RTU

programs: remote time (rtlme) and its server daemon "timeserver." This

program was the first of the Unix TCP/IP network programs to be implemented

and tested.

The third set of test programs which were demonstrated with the Translator

were the RTU programs: Trivial File Transport Protocol (TFTP) (routine

"tftp") and its server daemon "tftpserver."

As discussed previously in this report, the external Translator does

inherently contain limitations over an In-kernel Translator. The external

Translator requires that every program be linked with the Translator

library if it is to operate over the CCITT/ISO based network instead of the

TCP/IP based network.

52

6.0 CONCLUSION

6.1 ThQ0retlcal Develooment

A level of knowledge has been stimulated by this project that has public

purpose and has extended the basic knowledge and understanding in technical

communications methods used in space operations. The TCP/IP protocol is a

widely used computer-communicatlon procedure, and its transport level, TCP,

supports connectivity throughout the nation's computer-communication

networks. Internationally, however, the OSl stack has seen increased

implementation, and hence ISO/CCITT based standards are becoming the

reasonable substitute of choice for TCP/IP applications. Until systems can

fully incorporate the new and developing ISO/CCITT standards, this

TCP/TP4/TCP prototyped Translator process demonstrated a method to bring

about restructuring of systems supporting the OSl transport layer, while

allowing the upper-level protocols and applications to remain static.

Chapters One through Three provided the basis for the developed abstract

Translator primitives created in Chapter Four. All four of these chapters

are considered within the theoretical solution because they present the

communication standard's abstract primitives that were applied as the

cornerstone for the development of the Translator's set of abstract

primitives. Within this framework, it was clearly demonstrated that a set

of procedures could be developed that meets the objective of using TCP

application programs to communicate over a TP4 based network.

There were a few TCP functions, such as the URGENT marking of a message,

that could not be accomplished within the standard ISO/CCITT network

because of the lack of a similar mechanism in the TPA protocol. It was

recommended that Translator-to-Translator maneuvers could be developed to

support these kinds of activities, however this appeared beyond the scope

of the current activity. Instead, the theoretical Translator responded to

these kinds of requests by either using a legal TCP denial for the TCP/IP

service request or to generate a local value to simulate the response to an

end-to-end request. This allowed the TCP/IP application to work within the

constraints of the TP4 network.

The primary assumptions of providing the movement to ISO/CCITT based

systems at a later date and no software changes required by the users were

not violated by the above system, because all code implementations were

designed to occur within the Translator. Therefore the user should be

unaware of the Translator's existence, which is necessary to meet both

assumptions.

6.2 P_OO_-of-ConceDt

The research work reported in Chapter Five demonstrated both the capacity

to implement the theoretical Translator and some of the difficulties in

taking on such a challenge. The accomplishment of the transfer of actual

working files over the TP4 based network using application programs written

strictly for the TCP interface clearly displays that the objectives can be

53

met in real world networks. The general message passing programs that were

available to demonstrate a standard C language interface to TCP operated

properly w_en setup with the Translator. The utility remote time ("rtime")

successfully _emonstrated a typical standard service that is available to

TCP/IP users. Finally, file transfers using the more complex TCP/IP

application TFTP was achieved on the TP4 based network.

The primary assumption to allow for future movement to the exclusive use of

the CCITT/ISO standards once the application programs no longer need the

translator is inherent in the noninterferlng ISO/CCITT interaction

established by the SwRI Translator code and library routines. Once the

TCP/IP systems are no longer accessing the network, the Translator could be

withdrawn in a totally transparent manner. The movement of these

applications to the ISO/CCITT network standards is not impeded in any way

by the Translator's existence.

The other primary assumption that the application programs would require no

software alterations was also absolutely met. The interface is truly a

seamless crossover from the user's point of view. The requirement imposed

on the user to simply rellnk their TCP based object code to the SwRI

developed Translator library is as transparent an action as could be

conceived to implement a system that holds this level of complexity.

6.3 Further Research Considerations

There were many additional unexpected considerations that arose during the

implementation of the TCP/TP4/TCP Translator. The objective of developing
the SwRI demonstration code was to establish the feasibility of performing

the Translator function within an actual system. Two important issues

determined to be candidates for further study are the consequences of

nonconformity to the standards and the Translator's impact on network

performance.

6.3.1 Nonconformity to Standards

As was seen, when the theoretical translator was employed in a system that

has nonconformities to the standards, it demanded out-of-model responses

during the implementation. The impact of nonconformity will always be more

prominent when strictly commercial off-the-shelf (COTS) implementations are
considered the basis. The designers of these systems expect to be able to

integrate the standardized systems without problems, right off the shelf.

This is more than an expectation, it is usually an essential need, because

these designers normally have little to no detailed knowledge of the source

code that supports their system. They are expecting the COTS products to

interwork as advertised. Obviously, options and various interpretations of

a standard complicate this issue. This factor caused us to reach another

conclusion about this research. If a heterogeneous system of manufacturers

implement a set of standard protocols used for the network communication

standards, it can be expected to eventually fall because of the different

manufacturer interpretations and optional development inconsistencies.

This is especially apparent during follow-on "in-standard" expansion
efforts of the network even when all of the manufacturers claimed

54

conformance to the same protocols. Complex communication system networks

will always benefit when they are throughly tested against conformity to

the standa_ds.

6.3.2 performance Impact Issues

In this case, the proof-of-concept activities were applied to a network

that operates in a bursty message mode, with peaks in the demand on the

network. During the proof-of-concept evaluation, there was no indication

of slowdown or bogging of the network because of the existence of the

Translator external to the operating system. The CCITT/ISO networks are

reputed to be faster than the TCP/IP networks, so it is reasonable to

expect that little slowdown would be apparent when comparing "a TCP/IP only

network" against the "TCP/TP4/TCP translator network". However, analytical

measurements to compare performance was not accomplished in this study.

Before a final installation of a translator system is completed, it would

be a valuable exercise to spend research time in the area of expected

network performance alteration due to addition of such a translator. Not

only would the translator performance impact result, but a basic standard

of performance of the network could be characterized for future load study

comparisons.

55

APPENDIX A: ACRONYMS

APPENDIX A: ACRONYMS

ABT

ALC

AOD

ACO

ANSI

CCITT

CLG

CLS

CNCF

CNIN

CNRQ

CNRS

COTS

CPU

CHC

DAIN

DARQ

DLV

DOD

DSIN

DSRQ

EDIN

EDRQ

ERR

GPLAN

IEEE

I/O
ISO

ITU

LAN

IAN

JSC

MAN

MCC

MCCU

NASA

NIST

NRC

NSAP

OFA

OlD

OSC

OSI

QOS
RTU

SAP

SND

SPO

STR

t

Abort
Allocate

Active Open with Data

Active Open
American National Standards Institute

International Telegraph and Telephone Consultative Committee

Closing

Close

T-Connect Confirm

T-Connect Indication

T-Connect Request

T-Connect Response

Commercial Off-The-Shelf

Central Processing Unit

Channel capacity

T-Data Indication

T-Data Request

Deliver

Department of Defense

T-Disconnect Indication

T-Disconnect Request

T-Expedlted Data Indication

T-Expedited-Data Request

Error

General Purpose LAN

Institute of Electrical and Electronic Engineers

Input/Output

International Organization for Standardization
International Telecommunications Union

Local Area Network

Local Area Network

Johnson Space Center

Metropolitan area network

Mission Control Center

MCC Upgrade

National Aeronautics and Space Administration

National Institute for Standards and Technology

National Research Council

Network Service Access Point

Open Failure

Open ID

Open Success

Open System Interconnection

Quality of Service
Real Time Unix

Service Access Points

Send

Specified Passive Open

Status Response

A o I

STT
TC
TCP/IP
TFTP
TP
TS
TSAP
TSDU

Tim

ULP

UPO

VA

VC

VS

WAN

Status

Transport Connection

Transmission Control Protocol/Internet Protocol

Trivial File Transport Protocol

TranSport Protocol

Transport Service

Transport Service Access Point

Transport Service Data Unit

Terminate

Upper Layer Protocols

Unspecified Passive Open
Virtual Address

Virtual Circuit

Virtual Storage
Wide Area Network

V

A - 2

APPENDIX B: REFERENCES

APPENDIX B: REFERENCES

Black, Uy_ess, "Data Networks, Concepts, Theory, and Practice," Prentice

Hall, New Jersey, 1989.

Concurrent Computer Corporation, "RTU Programming Manual," Revision C,

1988.

Comer, Douglas, "Internetworklng with TCP/IP," Prentice Hall, New Jersey,

1988.

Faulk, S.R., D.L. Parnas, "On Synchronization in Hard-Real-Time Systems,"

Communications of the ACM, Vol. 31, No. 3, March 1988, pp. 274-287.

IBM Corp., IBM 3081 Functional Characteristics, IBM Pub. No. Ga22-7076-7,

Seventh Edition, 1986.

Kearney, M. W., "The Evolution of the Mission Control Center," Proceedings

of the IEEE, Vol 75, No. 3, March 1987.

Kusmanoff, A. L., "Real Time Bearing Estimation in a Multi-source

Environment Using Multl-processor, Multi-algorithmlc Acceleration," Ph.D.

Dissertation, Oklahoma State University, May 1989.

Perry, T.S., Zorpette, G., "Supercomputer Experts Predict Expansive

Growth," IEEE Spectrum, February 1989, pp. 26-33.

Schneldewlnd,

Application

Engineering,"

N.F., "Distributed System Software Design Paradigm With

to Computer Networks," IEEE Transactions on Software

Vol. 14, No. 4, April 1989, pp. 402-412.

Shatz, S.M., J. Wang, Tutorial: Distrlbuted-Software Engineering.

Washington, D.C.: IEEE Computer Society Press, 1989, pp. 58-59.

Stallings, William, "Handbook of Computer-Communications Standards, Volume

I, The Open Systems Interconnectlon (OSI) Model and OSI-Related Standards,

Howard Sams & Company, 1987.

Stallings, William, "Handbook of Computer-Communlcations Standards, Volume

3, Department of Defense (DOD) Protocol Standards, Howard Sams & Company,

1987.

B - I

APPENDIXC: TRANSLATORTESTROUTINES

ilii !Makefilei if!!i i!ii i

#

Generate the TCP/ISO/TCP translator test routines.

#

TJB - Southwest Research Institute

San Antonio, Texas

#

ALL = sendtcp recvtcp recv2 send2

CFLAGS = -c

#CFLAGS = -c -g -DDEBUG

LDFLAGS = -g

LIB =

LIBDIR =

LIBS =

/Lan/Libs/libiso.a

/Lan/Libs

$(LIBDIR)/libiso.a \

$(LIBDIR)/libtp4_if.a \

$(LIBDIR)/libsystem.a \

$(LIBDIR)/liblanbuffer.a \

$(LIBDIR)/liblanutil.a

INCDIR =

INCL

-I/Lan/Src/Lan/Include \

-I/Lan/Src/Lan/Include/sesstests

$(INCDIR)

all : $ (ALL)

Translator test programs - sendtcp

sendtcp.o: sendtcp.c $(LIB)

$(CC) $(CFLAGS) -o $@ sendtcp.c

sendtcp:

#

sendtcp.o $(LIB)

$(CC) $(LDFLAGS) -o $@ sendtcp.o $(LIBS)

$(CC) $(LDFLAGS) -o $@ sendtcp.o

send2.o: send2.c $(LIB)

$(CC) $(CFLAGS) -o $@ send2.c

send2: send2.o $(LIB)

$(CC) $(LDFLAGS) -o $@ send2.o $(LIBS)

#

recvtcp
#

recvtcp.o: recvtcp.c $(LIB)

$(CC) $(CFLAGS) -o $@ recvtcp.c

recvtcp:

#

recvtcp.o $(LIB)

$(CC) $(LDFLAGS) -o $@ recvtcp.o $(LIBS)

$(CC) $(LDFLAGS) -o $@ recvtcp.o

recv2, o : recv2.c $(LIB)

$(CC) $(CFLAGS) -o $@ recv2.c

recv2 : recv2 .o $ (LIB)

$(CC) $(LDFLAGS) -o $@ recv2.o $(LIBS)

:_iiiiiiiiiii_i_ • :!:: _i:i_:_

/*

W

*/

send2:c

send2 - program to send data to two sockets.

This program is an adaptation of recvtcp.c which was taken

from the RTU Programming Manual. This program is used as

an example of two TCP/IP socket connections across an ISO

LAN simultaneously.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <errno.h>

#include <netdb.h>

#define ERR 1

#define NO ERR 0

struct sockaddr in sinhiml = { AF INET };

struct sockaddr in sinhim2 = { AF INET };
m

struct hostent *hpl;

struct hostent *hp2;

int fdl,

fd2,

count;

extern int errno;

short buf[512];

I.

- *

*/
Main routine.

main(argc, argv)

int argc;

char **argv;

register int i;

/*

*/
Check command line argument count.

if (argc != 5)

{

fprintf(stderr, "\nUsage: sendtcp host port port count\n\n");

exit(ERR);

}

*

*/
Make sure we can resolve host name.

hpl = gethostbyname(argv[l]);

if (! hpl)

{

fprintf(stderr, "\nHost: '%s' not found\n\n", argv[l]) ;

exit(ERR);

}
else

send2;e i

hp2 = gethostbyname(argv[l]) ;

*/
Build address structure.

bcopy(hpl->h_addr, &sinhiml.sin_addr, sizeof(sinhiml.sin_addr));

bcopy(hp2->h addr, &sinhim2.sin_addr, sizeof(sinhim2.sin_addr));

sinhiml.sin_port = atoi(argv[2]);

sinhiml.sin__port = htons(sinhiml.sin_port);

sinhim2.sin_port = atoi(argv[3]);

sinhim2.sin_port = htons(sinhim2.sin_port);

/*

*/

This is the number of messages to send. Build a dummy message.

count - atoi(argv[4]);

strcpy((char *) buf, "Start of Message: 01234567890 :End of Message");

*/
Create both sockets.

if ((fdl = socket(AF_INET, SOCK STREAM, 0)) < 0)

{

perror("\nsendtcp socket()");

exit(ERR);

)

if ((fd2 = socket(AF_INET, SOCK_STREAM, 0)) < 0)

{
perror("\nsendtcp second socket()");

exit (ERR) ;

}

/*

*/

Establish connection to remote host.

if (connect(fdl, &sinhiml, sizeof(sinhiml)) < 0)

(
perror("\nsendtcp connect()");

exit(ERR);

}

/*

*/
Send messages to remote host using "write()"

errno = 0;

for (i=0; i<4; i++)

if (write(fdl, (char *) buf,strlen(buf)) != strlen(buf))

break;

/*

*/
Check for error writing to remote host.

if (errno)

{
perror("\nsendtcp: I/O error");

exit (ERR) ;

}
else

printf("Sent %d records to remote host\n", count);

*/
Make second connection.

if (connect(fd2, &sinhim2, sizeof(sinhim2)) < 0)

{
perror("\nsendtcp second connect()") ;

exit(ERR);

}

/*

*/

Write data to second socket.

errno = 0;

for (i=0; i<4; i++)

if (write(fd2, (char *) buf,strlen(buf)) != strlen(buf))

break;

/*

*/
Write data to first socket again.

errno = 0;

for (i=0; i<count; i++)

if (write(fdl, (char *) buf,strlen(buf)) != strlen(buf))

break;

exit(NO ERR);

/*

*/

recv2 - program to receive data from two sockets.

This program is an adaptation of recvtcp.c which was taken

from the RTU Programming Manual. This program is used as

an example of two TCP/IP socket connections across an ISO

LAN simultaneously.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <errno.h>

#include <netdb.h>

#define ERR -i

#define NO ERR 0

struct sockaddr in sinhiml = { AF INET };

struct sockaddr in sinhim2 - { AF INET };

struct sockaddr_in sinmel = { AF_INET };

struct sockaddr in sinme2 - { AF INET };

struct hostent *hp;

int protofdl,

protofd2,

fdl,

fd2,

count, sinlen;

extern int errno;

short buf[512];

char *hostname;

main ()

{
/*
.

*/
Create both sockets.

if ((protofdl - socket (AF_INET, SOCK_STREAM, 0)) < 0)

(
perror("recvtcp: socket()");

exit(ERR);

)

if ((protofd2 = socket(AF_INET, SOCK_STREAM, 0)) < 0)

{
perror("recvtcp: second socket()");

exit(ERR);

}

/*

*/
Bind both sockets.

if (bind(protofdl, &sinmel, sizeof(sinmel)) < 0)

(
perror("recvtcp: bind");

exit(ERR);

!

if (bind(protofd2, &sinme2, sizeof(sinme2)) < 0)

(
perror("recvtcp: second bind") ;

exit(ERR);

)

/*

*/
Get socket 1 name.

sinlen = sizeof(sinmel);

if (T_getsockname(protofdl, &sinmel, &sinlen) < 0)

(
perror("recvtcp: getsockname");

exit(ERR);

)

printf("recvtcp bound to port %d\n", ntohs(sinmel.sin_port));

/*

*/

Get socket 2 name.

sinlen = sizeof(sinme2);

if (T_getsockname(protofd2, &sinme2, &sinlen) < 0)

(

perror("recvtcp: second getsockname");

exit(ERR);

)

printf("recvtcp bound to port %d\n", ntohs(sinme2.sin__port));

/*

*/
Listen on socket I.

sinlen = sizeof(sinhiml);

if (listen(protofdl, 0) < 0)

{
perror("recvtcp: listen");

exit(ERR);

)

/*

*/
Accept on socket I.

fdl _ accept(protofdl, &sinhiml, &sinlen);

if (fdl < 0)

(
perror("recvtcp: accept");

exit(ERR);

)

/*

*/
Read the data from the first socket.

errno = 0;

for (count=0; count < 4; count++)

(

if (read(fdl, (char *) buf, sizeof(buf)) <= 0)

break;

else

printf("DATAl: %s\n", buf);

recv2:c:i

)

/*

*/
Listen on socket 2.

sinlen = sizeof(sinhim2);

if (listen(protofd2, 0) < 0)

{
perror("recvtcp: second listen");

exit(EKR) ;

}

*

*/
Accept on second socket.

fd2 = accept(protofd2, &sinhim2, &sinlen) ;

if (fd2 < 0)

(
perror("recvtcp: accept");

exit(ERR);

}

*

*/

Read the data from the second socket.

errno - 0;

for (count=0; count < 4; count++)

(
if (read(fd2, (char *) buf, sizeof(buf)) <= 0)

break;

else

printf("DATA2: %s\n", buf);

}

/*

*/

Read data from the first socket again.

errno = 0;

for (count-0; i; ++count)

!
if (read(fdl, (char *) buf, sizeof(buf)) <= 0)

break;

else

printf ("DATA1 : %s\n", buf) ;

)

/*

./
Print any error message.

if (errno)

(
perror("recvtcp: I/O error");

exit (ERR) ;

}

hp - gethostbyaddr(&sinhim2.sin_addr, sizeof(sinhim2.sin_addr),

sinhim2.sin_family);

if (hp)

hostname = hp->h_name;

_cv2,c _
else

hostname = "UNKNOWN HOST";

printf("recvtcp read %d buffers from %s port %d\n", count, hostname,

ntohs (sinhim2 .sin_port)) ;

exit(NO ERR);

sendtcp:c

/*

,k

*/

sendtcp - program to send data to a socket.

This program is taken from the RTU Programming Manual

and is used as an example of TCP/IP socket communication

across an ISO LAN.

• __i_-::'.'i;_i_!ili!_._!:_.'.'.},'.

:::.'.'_,"8!:i:_::$'.':!.'>..

:::::::::::::::::::::::::::::::::::

l

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <errno.h>

#include <netdb.h>

struct sockaddr in sinhim = { AF INET };

struct hostent *hp;

int fd, count;

extern int errno;

short buf[512];

main(argc, argv)

int argc;

char **argv;

register int i;

register struct hostent *hp;

if (argc != 4) {

fprintf(stderr, "\nUsage: sendtcp host port countknkn");
exit(l);

)

hp = gethostbyname(argv[l]) ;

if (! hp) {

printf("\nHost: '%s' not found\n\n", argv[l]);
exit (1) ;

)

bcopy(hp->h_addr, &sinhim.sin_addr, sizeof(sinhim.sin_addr));

sinhim.sin_port = atoi(argv[2]);

sinhim.sin_port = htons(sinhim.sin_port);

count = atoi(argv[3]);

strcpy((char *) buf, "Start of Message: 01234567890 :End of Message");

if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

perror("\nsendtcp socket()") ;

exit (1) ;

)

if (connect(fd, &sinhim, sizeof(sinhim)) < 0) {

perror("\nsendtcp connect ()") ;

exit (1) ;

!

/*

errno = 0;

for (i=0; i<count; i++)

if (send(fd, (char *) buf,strlen(buf),0) != strlen(buf)) */

if (write(fd, (char *) buf, strlen(buf)) != strlen(buf))

break;

sendtcp,c

if (errno) {

perror("\nsendtcp: I/O error");

exit (1) ;

)

else

printf("Sent %d records to remote host\n", count);

exit (0) ;

}

.:.._" "_.:::::::: :_!:i:l

• :::::::::::::::::::::::::::::

c!iiiiiii iiii!iiiiiiiiiii!i!i!iiiiiiiiiiiiiiiiliiiiliļ̧ ¸i!
/*

* recvtcp - program to receive data from socket.

* This program is taken from the RTU Programming Manual

* and is used as an example of TCP/IP socket communication

* across an ISO LAN.

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <errno.h>

#include <netdb.h>

struct sockaddr in sinhim = { AF INET };

struct sockaddr in sinme = (AF INET };

int protofd, fd, count, sinlen;

extern int errno;

short buf[512];

char *hostname;

struct hostent *hp;

main ()

(

if ((protofd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

perror("recvtcp: socket");

exit (1) ;

)

if (bind(protofd, &sinme, sizeof(sinme)) < 0) (

perror("recvtcp: bind");

exit (1) ;

}

sinlen = sizeof(sinme);

if (T_getsockname(protofd, &sinme, &sinlen) < 0) {

perror("recvtcp: getsockname");

exit(l);

}

printf("recvtcp bound to port %d\n", ntohs(sinme.sin_.port));

sinlen = sizeof(sinhim);

if (listen(protofd, 0) < 0) (

perror("recvtcp: listen");

exit(l);

)

fd = accept(protofd, &sinhim, &sinlen);

if (fd < 0) {

perror("recvtcp: accept");

exit(l);

)

/*

errno = 0;

for (count=0; i; ++count) {

if (recv(fd, (char *) buf, sizeof(buf), 0) <= 0) */

if (read(fd, (char *) buf, sizeof(buf)) <= 0)

break;

else

printf("DATA: %s\n", buf);

)

,: _ _ recvtcp,c i

if (errno) {

perror("recvtcp: I/O error");

exit (1) ;

}

hp = gethostbyaddr(&sinhim.sin addr, sizeof(sinhim.sin_addr),

sinhim, sin__family) ;

if (hp)

hostname = hp->h_name;

else

hostname m "UNKNOWN HOST";

printf("recvtcp read %d buffers from %s port %d\n", count, hostname,

ntohs(sinhim.sin_port));

exit (0) ;

)

....'.._
• ".::::E::__:i:i:{:i:_:i:ii

__iiiiili_iii!i!!iiiiiiiiii_i

APPENDIX D: TCP/TP4/TCP TRANSLATOR
x

Makefile

#

Generate the TCP/TP4/TCP translator.

#

TJB - Southwest Research Institute

San Antonio, Texas

#

ALL = TRANd

CFLAGS

#CFLAGS =

-c

-c -g -DDEBUG

LDFLAGS =

#LDFLAGS - -g

LIB =

LIBDIR -

LIBS =

/Lan/Libs/libiso. a

/Lan/Libs

$(LIBDIR)/libtp4_if.a \

$ (LIBDIR) /libsystem.a \

$ (LIBDIR) /liblanbuffer.a \

$ (LIBDIR)/liblanutil .a

INCDIR =

INCL -

-I/Lan/Src/Lan/Include \

-I/Lan/Src/Lan/Include/sesstests

$(INCDIR)

Name of the translator substitute routines.

TRANS accept.o \

TRAN utils.o\

bind?o \

close.o \

connect.o \

debug.o \

exit.o \

listen.o \

gethostnam.o\

getservent.o\

getsockopt.o\

read.o \

recv. o \

send.o \

shutdown.o \

socket.o \

t bind.o \

t_gethostn.o\

t read.o \

t socket.o \

t write.o \

transport.o \

utils.o \

write.o

ii : $(ALL)

#

Translator modules

#

$(LIB)

TKAN utils.o:

accept.o

bind.o

close.o

connect.o :

debug.o

exit.o

gethostnam.o:

getservent.o:

getsockopt.o:

listen.o

read. o

recv. o

send.o

shutdown.o :

socket.o

t bind. o

t_gethostn.o:

t read.o

Make file

$(TRANS)

rm $(LIB)

ar r $(LIB) S(TRANS)

ranlib $(LIB)

TRAN utils.c translator.h

$(CC_ $(CFLAGS) -o $@ TRAN utils.c $(INCL)

accept.c translator.h

$(CC) $(CFLAGS) -o $@ accept.c -DDEBUG $(INCL)

bind.c translator.h

$(CC) $(CFLAGS) -o $@ bind.c $(INCL)

close.c translator.h

$(CC) $(CFLAGS) -o $@ close.c $(INCL)

connect.c translator.h

$(CC) $(CFLAGS) -o $@ connect.c -DDEBUG $(INCL)

debug.c translator.h

$(CC) $(CFLAGS) -o $@ debug.c -DDEBUG $(INCL)

exit.c translator.h

$(CC) $(CFLAGS) -o $@ exit.c $(INCL)

gethostnam.c translator.h

$(CC) $(CFLAGS) -o $@ gethostnam.c S(INCL)

getservent.c translator.h

$(CC) $(CFLAGS) -o $@ getservent.c $(INCL)

getsockopt.c translator.h

$(CC) $(CFLAGS) -o $@ getsockopt.c $(INCL)

listen.c translator.h

$(CC) $(CFLAGS) -o $@ listen.c $(INCL)

read.c translator.h

$(CC) $(CFLAGS) -o $@ read.c $(INCL)

recv.c translator.h

$(CC) $(CFLAGS) -o $@ recv.c $(INCL)

send.c translator.h

$(CC) $(CFLAGS) -o $@ send.c $(INCL)

shutdown.c translator.h

$(CC) $(CFLAGS) -o $@ shutdown.c $(INCL)

socket.c translator.h

$(CC) $(CFLAGS) -o $@ socket.c $(INCL)

t bind.s

as -o t bind.o t bind.s

t_gethostn.s

as -o t_gethostn.o t_gethostn.s

t_read.s
as -o t read.o t read.s

t socket.o : t socket.s

Makefde

as -o t socket..o t socket.s

t write.o : t write, s

as -o t write.o t write.s

transport.o : transport .c translator.h

$(CC) $(CFLAGS) -o $@ transport.c $(INCL)

utils .o utils.c translator.h

$(CC) $(CFLAGS) -o $@ utils.c -DDEBUG $(INCL)

write, o write.c translator.h

$(CC) $(CFLAGS) -o $@ write.c $(INCL)

Translator daemon

TKANd. o : TRANd. c $ (LIB)

$(CC) $(CFLAGS) -o $@ TRANd.c $(INCL)

TKANd : TRANd. o

$(CC) $(LDFLAGS) -o $@ TRANd.o $(LIB) $(LIBS) -ljobs

TRAN_utils,c

* FILE NAME:

* FILE FUNCTION:

* FILE MODULES :

* TKAN_add_proc ()
* TRAN attach ()

* TR/_N_get_sock ()
* TRAN next fd()

* TRAN_test pfd()

TRAN utils.c

TCP/TP4/TCP Translator routines - these utility routines are used

to manage the file descriptor and process structures maintained in

TKANd's shared memory segment.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

w

* REVISION HISTORY:

#include "translator.h"

#include <fcntl.h>

#include <errno.h>

#include <sys/param.h>

#include <sys/shm.h>

*/
Translator globals.

TRAN_memory *TKANm;
int TKANs;

struct sembuf psemop;

struct sembuf vsemop;

/* translator semaphore id ,/

TRAN_udls.c

* MODULE NAME: TRAN_add proc()

* MODULE FUNCTION:

This routine is used to add a process to the Translator's list

of processes which are using a TCP/TP4 socket. This routine is

also used to locate the index of an existing process which is

registered in the table.

* ASSUMPTIONS:

* Module assumes a pointer to the Translator shared memory is

* initialized within the current process.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

" ORIGINAL AUTHOR AND IDENTIFICATION:

e

w

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

int TKAN_add proc(pid)

int pid;

register int i,j;

Proc Struct *p;

/*

First, check for existing process.

i-0;

while (i<MAX PROCs)

{

if (TRANm->Proc[i].proc -- pid)
return(i);

else

i++;

}

*

*/

Process not found in table, find first available process

table entry. Wait on shared memory semaphore.

TRAN_u h.¢

WAIT(TKANs);

i-0;

while ((i<MAX_PROCs) && (TRANm->Proc[i].proc))
i++;

/*

*/

If we are at the end of the table, there were none available

so return an error code to caller.

if (i -- MAX PROCs)

{

SIGNAL(TRANs);

return(ERR);

}

*

*/

There is an available table entry, add the process and init

the file descriptors. Release the shared memory semaphore.

p - (Proc_Struct *) &(TRANm->Proc[i]);

p->proc - pid;

SIGNAL(TRANs);

t

*/
Initialize file descriptors.

for (J-0; J<M__FDs; j++)

p->fd[J] - NONE;

return(i);

!

TRAN utiIs.c

* MODULE NAME: TRAN attach()

* MODULE FUNCTION:

* This function attaches the Translator's shared memory segment and

* the Translator semaphore.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

w

W

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division
Southwest Research Institute

TRAN_memory

{
static

int

*TRAN attach()

char *m - NULL;

mid,

nbytes;

*/
See if TRAN_attach() has already been called.

if (! m)

(

/*

./
Get address of page boundry past current segment.

m- (char *) (((unsigned) sbrk(0) +0xfff) & ~0xfff);

/*

Find memory size rounded up to nearest page size

nbytes = (btoc(sizeof(TRAN_memory)) * NBPG);

/*

Create enough space in the data segment. Return NULL on failure.

if (brk(m + nbytes))

return(NULL);

/*

TRAN_u .¢

* Return the shared memory id of the existing

* shared memory segment. Don't allocate if not present.

* Attach to the shared memory segment at the beginning

* of the newly created virtual data segment. (Round down

* to the nearest page.) Return NULL on failure.

*/

if ((mid - shmget (TRANm_KEY, nbytes,0777)) !- ERR)

{
m- (char *) sbrk(0) -nbytes;

if ((m- (char *) shmat(mid, m, SHM_KND)) =- (char *) ERR)

return(NULL);

else

TRANm - (TRAN_memory *) m:

)
else

return(NULL);

)

/*

*/
Attach to shared memory semaphore.

if ((TRANs-semget (TRANs_KEY, I, 0777)) -- ERR)

(
perror("TKAN_attach: semaphore get failed") ;

return(NULL);

)

return((TRAN_memory *) m);

TRAN_udh.c

* MODULE NAME : TRAN_get_sock ()

* MODULE FUNCTION:

This function allocates a new socket/file descriptor from the

Translator socket/file descriptor table. The buf_flag is used

to indicate if shared memory buffers will be needed to transfer

data with TP4.

* ASSUMPTIONS:

* Module assumes a pointer to the Translator shared memory is
* initialized.

" SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs
w

* ORIGINAL AUTHOR AND IDKNTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

- Release 1.0 - 90/09/27

int TRAN_get_sock(type, family, proto, bur_flag)

int buf_flag,

family,

proto,

type;

(

int fd,

i,j;

*/
Get a dummy socket from the system.

if ((fd-t_socket (family, type,proto)) -- ERR)

{

perror("TRAN_get_sock: t_socket () failed") ;

errno - EMFILE;

return(ERR);

}

/*

w

See if there is already a socket at this table

entry. If so, there is an error.

*/

TRAN_udls.c

if (P->fd[fd] !- NONE)

{
errno - 0;

perror("TKAN_get sock: table fd is already active");

return(ERR);

I

"/

Obtain exclusive access to shared memory, and

don't release it until active flag is initialized.

WAIT(TRANs);

if ((i-TRAN next_fd()) -- ERR)

(
SIGNAL(TKANs);

perror("TKAN_get sock: file descriptor table full");
return(ERR);

I
TRANm->FD [i] .active - TRUE;

SIGNAL(TRANs) ;

TRANm->FD[i].blocking

TRANm->FD[i].bound

TRANm->FD[i].connected

TRANm->FD[i].data

TKANm->FD[i].listen

TRANm->FD[i].protocol

TRANm->FD[i].socket

TRANm->FD[i].type

TRANm->FD[i].use count

- TRUE;

- FALSE;

- FALSE;

- FALSE;

- TRUE;

- proto;
- TRUE;

- type;

TKANm->FD[i].ev.msg_queue - 0;

TRANm->FD[i].laddr.sock.sa.sin_family - family:

if (bur_flag)

{
TKANm->FD[i].rcv bur - balloc(TP BUF);

TRANm->FD[i].snd buf - balloc(TP BUF);

if ((TRANm->FD[i].rcv bur -- NULL)]I

(TRANm->FD[i].snd bur -- NULL))

(
WAIT(TRANs);

TRANm->FD[i].active - TRUE;

SIGNAL(TRANs);

perror("TRAN get sock() - no buffers");

return(ERR);

}

/*

,,/

Initialize process file descriptor pointer to point to

new file descriptor.

P->fd[fd] - i;

return(fd) ;

t

* REVISION HISTORY:

TRAN_ufils.c

t

* MODULE NAME: TIII_ next fd()

* MODULE FUNCTION:

* Function locates the next available file descriptor in the Translator's

file descriptor table.
w

* ASSUMPTIONS:

* Module assumes a pointer to the Translator shared memory is
* initialized.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

" ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

int TKAN next fd()

{
register int i-0;

while ((i<MAX_FDs) && (TRANm->FD[i].active))
i++;

if (i -- MAX FDs)

(
errno - EMFILE;

return(ERR);

}
return(i);

TR__u_s.c

• MODULE NAME : TKAN_test_pfd ()

• MODULE FUNCTION:

• This function determines if the current process has any available

• process file descriptor pointers. The process file descriptor

• pointers are an index into the Translator's file descriptor table.
t

* ASSUMPTIONS:

* Module assumes a pointer to the Translator shared memory is

- initialized.

* Module assumes global vat P points to the current process structure.

w

w

w

* REVISION HISTORY:

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

int TRAN_test pfd(flag)

int flag;

register int i;

if (flag -- PFD_ANY)

(
i-0;

while (i < MAX PFDS)

if (P->fd[[] -- NONE)

return(NO ERR);

else

i++;

return(ERR);

)

L

TRANd.c

* FILE NAME: TRANd.c

t

* FILE FU'NCTION:

* FILE MODULES:

TCP/ISO/TCP daemon process. TKANd allocates shared memory, inits

the shared memory, creates the server request sockets, and then

waits for requests on the sockets. The TRANd serves as the inetd

for the TCP/TP4 sockets.

* check_procs ()

* check socks()

* create TKANm ()

* create TRANs()

* create socks()

exit_T_%Nd ()

* fork_processes ()
* init TRANm ()

* init_signals ()
_' main()

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

*

* REVISION HISTORY:

* Release 1.0 - 90/09/27

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

#include "translator.h"

#include <errno.h>

#include <fcntl.h>

#include <signal.h>

#include <sys/shm.h>

#include <sys/param.h>

/*

./
Function prototypes.

_tatic TRAN_memory
static in*

static void

*create_TRANm();

create TRANs(),

create socks(),

init TRANm();

chec___procs(),

check socks(),

exit _RANd (),

init_signals () ;

TRANd.c

, Globals.

./

TKAN_memory *TKANm;
int TRANs,

mid,

rsh_fd,
rtime fd,

sinle_:

char *mem;

/, translator shared memory pointer */

/* translator semaphore id */

/* translator shared memory id */

struct sembuf psemop;

struct sembuf vsemop;

struct sockaddr_in sinme

struct servent *sp;

- { AF INET };

TRANd.c

" MODULE NAME : main ()

, MODULE FUNCTION:

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

This is the main function of TKANd. All memory, semaphores are created

and initialized. After the necessary resources are created, this routine

checks the server sockets for connection requests. If a request is found,

a server is spawned to process the request. This process also checks

for dead processes and releases their resources if one is found.

t

* REVISION HISTORY:

* Release 1.0 - 90/09/27

int main(argc, argv)

char **argv;

int argc;

/*

*/
Create Translator shared memory.

if ((TRANm - create TRANm()) -- NULL)

{
fprintf(stderr, "TRANd: shared memory creation failed\n");

exit(ERR);

)

/*

./
Create Translator shared memory access semaphore.

if ((create TKANs()) -- ERR)

(

fprintf(stderr, "TKANd: semaphore creation fafledkn");

exit(ERR);

}

/t

*/

Setup signals to deallocate memory in the event this

process is terminated.

/t

*/

TRANd.c

init_signals () ;

*!

Initialize the ISO translator shared memory.

if (init TKANm())

exit__RANd(0):

t

t

*/

Create server sockets.

• f (create socks())

w

*/

exit TRANd(0);

Check to see if any processes have died ungracefully and

remove their process table entries if they have.

Check for activity on "netd" sockets. If connect requests

are found, spawn processes to handle requests.

while (TRUE)

{

check procs();
check socks();

sleep(5];

)

TRANd.c

/*t*_**t_*t*_ttf*t*tt*ttt*tt**t**tt(.... >*_*tt*ttt_ttttttttWtttt*ttttttftt_

* MODULE NAME: check procs()

* MODULE FUNCTION:
t

* Check to see if any processes have died ungracefully and

* remove their resources if they have.

* SPECIFICATION DOCIA_NTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Departn_Dnt

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

tt**tt_t*tWtt*tttt*l*_**tttft*t*ttt<)t*tt*lttt*ttttttt*tt*t_ttt**l.lt,_/

static void check_procs()
(

register in, i,j;

in, index;

Proc_Struct *p;

/*

*/

Loop through all process entries and make sure they are active

by sending the NULL kill signal.

for (i-0; i<MAX_PROCs; i++)

if (TRANm->Proc[i] .proc)

{

p - & (TRANm->Proc [i]) ;

if ((kill(p->proc, 0)) -- ERR)

(

/*

,/

Process is no longer active, get exclusive

access to shared memory and check all of the

process file descriptors.

WAIT(TKANs);

for (j-0; j<MAX_PFDS; j++)
{

if (p->fd[j] !-NONE)
{

L J/* ._

TRANd.c

* A file descriptor exists for a dead process.

* Decrement the use count. If use count -- 0,

* remove the file descriptor and the message

* queue.

*/

index - p->fd[j];

TKANm->FD [index] .use_count-- ;

if (! TRANm->FD[index] .use count)

{
TRANm->FD[index].active - FALSE;

if (TRANm->FD[index] .ev.msg_queue)

msgctl(TRANm->FD[index] .ev.msg_queue, IPC_RMID, 0) ;

)
}

p->fd[j] - NONE;

}

t

t

*/

Remove the process entry in the process table.

p->proc - O;

SIGNAL(TRANs);

ISOIog("TRANd: removed dead pid\n");

)

TRANd.c

* MODULE NAME: check_socks()

* MODULE FUNCTION:

* This process is currently not implemented because the Translator

currently does not support fork() and exec(). This function should

be implemented should TRANd begin to create the "netd" server sockets.

* SPECIFICATION DOCUMENTS:

, /Lan/Translator/Specs

" ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division
Southwest Research Institute

* Release 1.0 - 90/09/27

static void check socks()

{

TRANd,c

* MODULE NAME: create_TKANm()

* MODULE FUNCTION:

, This function creates the shared memory segment used by all Translator

* processes. This shared memory segment is where the process table and

- file descriptor table are maintained.

w

f

W

• REVISION HISTORY:

SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

w

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department
Automation and Data Systems Division

Southwest Research Institute

static TRAN_memory

(
int nbytes;

char *sbrk(),

*shmat();

key_t tran_key - TKANm_KEY;

/*

*/

*create_TRANm()

/* size of memory to get */

Get addr of page boundary beyond current segment

sbrk(0) - gets address of the end of the data segment

mere- (char *) (((unsigned) sbrk(0) +0xfff) & ~0xfff);

*/

Find memory size rounded up to nearest page size using

the btoc() macro. (bYTES to PAGE cLICKS)

nbytes - btoc(sizeof(TRAN_memory)) * NBPG;

if (brk(mem + nbytes))

{
fprintf(stderr, "TRANd: brk test failed\n");

return (NULL);

)

t Allocate nbytes worth of system shared memory resources.

Let anybody access them. Return bad status if an error

OCCURS.

TRANd.c

mid - shmget(tran_key, nbytes, IPC_CREAT 1 0777);

if (mid !- -I)

{

/*

* Attach shared memory to nearest page boundary (round down)

*/

mem - sbrk(0) - nbytes;

mem - shmat(mid, mem, SHM RND);

t If an error occurs then return bad

• status to the calling function.

if ((int)mem -- -I)

return(NULL) ;

}

else

(

fprintf(stderr, "TRANd: failed getting shared memory\n");
return(NULL);

}

return((TKAN_memory *) mem);

"[ANd.c

e

" REVISION HISTORY:

*

* MODULE NAME: create TRANs()

* MODULE FUNCTION:

- Create the Translator shared memory exclusive access semaphore.
f

* SPECIFICATION DOCUMENTS:

t

* /Lan/Translator/Specs
t

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

. Release 1.0 - 90/09/27

static int create_TRANs ()

(
if ((TRANs-semget (TRANs_KEY, i, IPC_CREAT J 0777)) -- ERR)

return(ERR) ;

/*

*/
Don't allow shared memory access yet.

semctl(TRANs, SEMNUM, SETVAL, 0);

TRANd.¢

* MODULE NAME: create socks()

* MODULE FUNCTION:

This routine creates the server side of the sockets used to access

the "r*" (rtime, rsh, etc.) network utilities. Note, if an error is

detected, log the error but return good status so the shared memory

is not removed from the system.

This function is currently not implemented due to the Translator's

inability to support fork() and exec() .

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* REVISION HISTORY:

* Release 1.0 - 90/09/27

static in, create socks()

(
in* fd;

/*

*/
Create rtime() server socket.

if ((rtime_fd - socket (AF_INET, SOCK_STREAM, 0)) < 0)
{

ISOIog("TRANd: error creating rtime() socket\n") ;

return(NO ERR);

)

sp - getservbyname("time","tcp");

sinme.sin_port - sp->s_port;

if (bind(rtime_fd, &sinme, sizeof(sinme)) < 0)
{

ISOIog("TRANd: error binding rtime() socketkn") :

return(NO ERR);

)

/*DEBUGS/

I* See setsockopt() comments.

fcntl(rtime_fd, F_SETFL, FNDELAY) ;

TRANd,c

setsockopt(rtime_fd, SOL_SOCKET, NO_BLOCK, NULL, 0);

/W

"/

Create rsh() server socket. Update the test for existing

sockets in the "if" statement below when the code for rsh()

is added.

/*

Wipe out file descriptors to get back to zero.

for (fd - getdtablesize(); --fd >- 0;)

if ((fd !- 2) && (fd !- rtime_fd))

close(fd);

if ((fd-open("/dev/null",0_RDWR)) !- 0)

{

ISOIog("TRANd: couldn't get file descriptor zero\n");

return(NO ERR];

}

else

close(fd);

return(NO_ERR);

TRA/_d.c

/.t._**_,_t,_*******_,_t_t,_,_ < >***_._***_****_*_*t*_tft_***_**

t

MODULE NAME : exit TKANd ()

* MODULE FUNCTION:

" This function first removes any resources held by Translator processes.

" The TKANd program is then exited.

, SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* REVISION HISTORY:

* Release 1.0 - 90/09/27

"-- _tatic void exit_TRANd(signal)

int signal;

register int i;

*

*/
Remove all Transport-Session message queues held by "sockets".

for (i-0; i<MAX FDs; i++)

if (TKANm->FD[i].ev.msg_queue)

msgctl(TRANm->FD[i].ev.msg_queue, IPC_RMID, 0);

*

Remove shared memory segment.

shmdt(mem);

shmctl(mid, IPC_RMID, 0);

/*

Remove semaphore.

semctl(TRANs, IPC_RMID, 0);

*

* Bye !
*/

exit(0);

TRANd°c

TRANd.c

t

* MODULE NAME: fork_process()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator fork() routine. This function is currently not

* implemented.

* SPECIFICATION DOCUMENTS:

/Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

* Timothy J. Barton - Software Engineering Section

* Data Systems Department

* Automation and Data Systems Division

* Southwest Research Institute

* REVISION HISTORY:

* _elease 1.0 - 90/09/27

int

{

fork_process()

Proc_Struct *p;

int i,j,

pid,

ppid;

/*

if ((pid-fork()) !- 0)

return(pid);

Otherwise, we are the new process, lets add ourself to the process

descriptor table and init our fds.

Attach to LAN memory.

if (LANmat () =_ NULL)

(

ISOlog("fork() - couldn't attach to LAN memory\n");
exit (ERR);

}

Attach to translator shared memory.

if ((TRANm-TRAN_attach ()) -= NULL)

TRANd.c

!

ISOlog("fork() - couldn't attach to TRANd memory\n");

exit(ERR);

}

Add this new process to the translator process table.

Pidx - TRAN_add proc(getpid()) ;

if (Pidx -- ERR)

{
ISOlog("fork() - couldn't add a new process\n");

exit(ERR) ;

)

Get the parent's process ID.

ppid - getppid();

* Loop through the translator process table looking for this

* process' parent. When the parent is found, set a pointer to

* the parent's process table entry; then loop through all of

* the parent's file descriptors and set the child's file

* descriptors to the same fd as the parent.
t

i'0;

while (i<MAX PROCs)

(
if (TRANm->Proc[i].proc =- ppid)

{
p - (Proc_Struct ") &(TRANm->Proc[i]);

debug("TRANd: found parent %d at %d",ppid, i);

debug("TRANd: child %d at %d",getpid(),Pidx) ;

debug("TRANd: parent proc is %d", p->proc);

debug("TRANd: child proc is %d", TRANm->Proc[Pidx] .proc);

for (j-0; j<MAX_FDS; j++)

if (p->fd[j] !- NULL)

(

TRANm->Proc[Pidx] .fd[J] - p->fd[J] ;

debug("TRANd: socket at %d", j) ;

if (p->fd[J] !- NULL)

debug("TRANd: parent port %d child port %d",

p->fd[J]->raddr.sock.sa.sin port,

TRANm->Proc[Pidx].fd[j]->raddr.sock.sa.sin_port);

}

TRANm->Proc[Pidx].fd[0] - &(TRANm->FD[2]);

debug("TRANd: - child protocol %d",TRANm->Proc[Pidx] .fd[0]->protocol);

break:

}
else

i++;

}

* If we didn't find the parent in the translator process table,

}

TRANd.c

abort.

if (i--MAX_PROCs)

{

debug("fork() - couldn't find parent's proc table entry");
exit(ERR) ;

}

return(pid);

TRANd.c

" MODULE NAME: init TRANm()

t

* MODULE FUNCTION:

* This function initializes the Translator shared memory segment by

- initializing the process descriptor table and the file descriptor

* table. This function also inits the port number indicator and

* releases the shared memory semaphore.

* REVISION HISTORY:

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

static in, init_TRANm()

(
register in, i,J;

*

*/
Initialize the process table.

for (i-0; i<MAX PROCs; i++)

{
TKANm->Proc[i] .proc - 0;

for (j-0; j<MAX_PFDS; j++)

TRANm->Proc[i].fd[J] - NONE;

)

./
Initialize the socket descriptor table.

for (i-0; i<MAX_FDs; i++)

TKANm->FD[i].active - FALSE;

*/
Initialize the next avaliable port indicator.

TRANm->next_.port - IPPORT_RESERVED + I;

/*

*/
Turn loose shared memory access.

TRANd.c

semctl(TRANs, SEMI_JM, SETVAL, 1);

return(NO ERR)"

TRANd.c

t

* REVISION HISTORY:

" MODULE NAME: init_signals()

* MODULE FUNCTION:

* This process initializes the Unix signal handler to call exit TRANd()
* so the Translator resources are removed when this program exits.

" SPECIFICATION DOCUMENTS:

" /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

static void init_signals()
(

signal(SIGHUP, exit_TRANd);

signal(SIGINT, exit_TRANd);

signal(SIGTERM, exit_TRANd);

}

/* i */
/" 2 "/
/* 15 "/

=

accept.c

* MODULE NAME: accept()

- MODULE FUNCTION:

- TCP/TP4/TCP Translator accept() replacement routine.

w

" SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

" ORIGINAL AUTHOR AND IDENTIFICATION:

* Timothy J. Barton - Software Bngineering Section

Data Systems Department

Autor_tion and Data Systems Division

Southwest Research Institute

w

w

w

" REVISION HISTORY:

" Release 1.0 - 90/09/27

#include "translator.h"

#include <errno.h>

#include <memory.h>

TKAN_memory *TKANm:

int accept(s, addr, addrlen)

int *addrlen,

s;

struct sockaddr in *addr;

int fd,

index;

FD Struct *f;

register struct ev *ev;

Make sure descriptor is valid.

if (! check FD(s))

{
errno - EBADF;

perror("accept () - Invalid socket descriptor") ;
return(ERR) ;

)

f = &(TKANm->FD[(P->fd[s])]);

i accept.e

/-
* Make sure descriptor is a socket.

*/

if (! f->socket)

!
errno - ENOTSOCK;

perror("accept() - Descriptor is not a socket");

return(ERR) ;

/*

Make sure this socket is of type STREAM.

if (f->type !- SOCK_STREAM)

(
errno - EOPNOTSUPP;

perror("accept() - Socket type is not STREAM");

return(ERR);

)

f

*/

Make sure this socket has been "listen"ed on.

if (f->listen !- ACTIVE)

{
errno - EINVAL;

perror("accept() - Listen call has not been made on socket");

return(ERR];

}

* Make sure addr is in "write" area of caller's address space.

if(0)

(
errno - EFAULT;

perror("accept() - No write permission in address space");

return(ERR);

}

Make sure a connection indication has been received if

socket is marked non-blocking.

if ((! f->blocking) && (! f->connected))

(
errno - EWOULDBLOCK;

perror("accept() -Non-blocking socket - no available connection");

return(ERR) ;

}

If non-blocking and no connection, wait for connection.

#ifdef DEBUG

debug("accept() - passed checks, waiting for connect");
#endif DEBUG

J
while (! f->connected)

check_TP4_q(f);

accept.c

/*

s_ Issue disconnect so we can deactivate the current TSAP.

tsap_disconnect(f->machp, f->ev.msg_queue);

*/

Deactivate the current TSAP so we can build a new one, with all

four parts of the Internet style address. See connect.c.

tsap_deactivate(f->machp, f->ev.msg_queue)7

t

"/

Build new TSAPs. Add local port to remote address and add remote

port to local address.

f->connected - FALSE;

f->activated - FALSE7

f->raddr.sock.sa.sin_pad. Sin_longs[0] - f->laddr.sock.sa.sin port;

f->laddr.sock.sa.sin_.pad. Sin_longs[0] - f->raddr.sock.sa.sin__port;

./

Rebuild transport interface, init ifc() will initialize the

event queue and call TSUadd() to add the TSAP.

if (init_ifc(&f->laddr.tsap,&f->ev) -- ERR)
{

perror("accept() - couldn't create new TSAP");

return(ERR);

)

f->rcv_buf->length - 07

f->activated - TRUE;

#ifdef DEBUG

debug("accept: remote addr %d %d %d %d %d",

f->raddr.sock.sa.sin_family,

f->raddr.sock.sa.sin_.port,

f->raddr.sock.sa.sin_addr. S un.S_addr,

f->raddr.sock.sa.sin_pad. Si___longs[0],

f->raddr.sock.sa.sin_pad. Sin_longs[l])7

debug("accept: local

#endif DEBUG

addr %d %d %d %d %d",

f->laddr.sock.sa.sin_family,

f->laddr.sock.sa.sin port,

f->laddr.sock.sa.sin_addr. S un.S_addr,

f->laddr.sock.sa.sin_pad. Si__longs[0],

f->laddr.sock.sa.sin_pad. Sin_longs[l])7

*

Wait for connection again.

#ifdef DEBUG

debug("accept: waiting for 2nd connection indication");
#endif DEBUG

while (! f->connected)
check_TP4_q(f) ;

acceptc

#ifdef DEBUG

debug("accept: ## Connection established to remote");

#endif DEBUG

*/

Connection has been established, make sure this process can

handle another socket descriptor.

if (TKAN_test pfd(PFD ANY))

(

errno - ENOBUFS;

perror("accept() - Wile descriptor table full");

return(ERR);

}

/*

W

*/

Get a new system socket and initialize a table entry for the new

Translator socket.

fd - TRAN_get_sock(f->type, f->laddr.sock.sa.sin_family, f->protocol, NO_BUn);

if (fd -- ERR)

(

errno - EMFILE;

perror("accept() - Couldn't get socket descriptor");

return(ERR);

}

/*

"/

Assign old socket values to new socket descriptor.

index - P->fd[fd];

TKANm->FD[index] - "f;

f - &(TRANm->FD[index]);

-/

Initialize event queue - pointers in new file descriptor currently

point into old structure, so init all pointers to NULL. Event

queue in new file descriptor will be clean and will receive next

event.

QInit (& (f->ev.evavail)) ;

QInit (& (f->ev.evqueue)) ;

for (ev - f->ev.events; ev < &(f->ev.events[MAXEVS]) ; ev++)

{

QInit (ev) ;

QInsert(ev, & (f->ev.evavail)) ;

)

#ifdef DEBUG

debug("accept: assigned new process file descriptor");

#endif DEBUG
j

*/

Update input parameters. If the caller has supplied a structure,

fill it in with the remote socket address.

if (addr)

{
*addr - f->raddr.sock.sa;

*addrlen - 4;

)

return(fd);

accept.c

b nd.c

* MODULE NAME : bind ()

" MODULE FUNCTION:

- TCP/TP4/TCP Translator bind() replacement routine.

Specify the local half of an Internet association -> local address and

local port.

* SPECIFICATION DOCUMENTS:

, /Lan/Translator/Specs

ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

w

* REVISION HISTORY:

" Release 1.0 - 90/09/27

#include "translator.h"

#include <errno.h>

static struct sockaddr in sin - { AF INET };

extern TKAN memory "TRANm;

int bind(s, name, namelen)

int namelen,

s;

struct sockaddr in *name;

int len;

FD Struct *f;

*/

Make sure descriptor is valid.

to the file descriptor.

If it's valid, set a pointer

if (! check FD(s))

(
errno - EBADF;

perror("bind() - Invalid socket descriptor");

return(ERR);

}

f - &(TRANm->FD[(P->fd[s])]);

bind.c

t

*/

Make sure descriptor is a socket.

if (! f->socket)

{

errno - ENOTSOCK:

perror("bind() - Descriptor is not a socket");

return(ERR);

)

*/

Make sure the socket is not already bound.

if (f->bound)

{

errno - EINVAL;

perror("bind() - Socket is already bound");

return(ERR) ;

}

/*

w

w

w

*/

Add code to check the following error conditions:

name is not available on local machine

name is already in use

name is protected

name is not part of caller's address space

if (0)

{

errno - EADDRINUSE;

perror("bind() - ");

return(EKR);

}

/*

"/

Build the local NSAP. Note that the NSAP contains the

ethernet number which is obtained from LAN shared memory.

f->l_nsap.len - 8;

f->l_nsap.addr[0] - AFI;

f->l_nsap.addr[7] - LSAP;

bcopy(((LAN_memory *)LANm)->eth_addr, &f->l_nsap.addr[1], 6);

* See if the caller supplied a requested local port, if not, bind

* the system socket to obtain a local port number.

*/

if (name->sin port -- 0)

(

#ifdef SYS PORT

if (t bind (s, &sin, sizeof(sin)))

(

perror("bind: t bind() failed");

return(ERR);

)

bind.c

/st

Determine what port the system socket is using.

if (getsockname (s, &sin, &fen))

{
perror ("bind: t_getsockname () failed") ;

return(ERR);

}

Init the translator fd port number to the system port

number. This ensures that the translator port numbers

are unique.

#else

#endif

f->laddr.sock.sa.sin__port - sin.sin_port;

f->laddr.sock.sa.sin_port - TRANm->next_port++;

}

Caller supplied a local port, use it.

else

f->laddr.sock.sa.sin_port - name->sin..port;

/*

* Convert the local ethernet number to an Internet number and store it

* in the local TSAP.

-/

ether_to_internet(&f->l nsap.addr[l], &f->laddr.sock.sa.sin_addr);

*

t

*/

Zero PAD portion of TSAP.

Set size of local TSAP. TSAP contains a complete sockaddr_in

structure (in.h) as the TSAP id.

f->laddr.sock.sa.sin_pad. Sin longs[O] - O;

f->laddr.sock.sa.sin_.pad. Sin_longs[l] " O;

f->laddr.tsap.len - sizeof(struct sockaddr in);

/*

*/

Mark socket as bound and TSAP activated.

f->bound - TRUE;

#ifdef DEBUG

debug("bind() - %d %d %d %d %d",

f->laddr.sock.sa.sin_family,

f->laddr.sock.sa.sin_port,

f->laddr.sock.sa.sin addr. S un.S_addr,

f->laddr.sock.sa.sin_ad. Si__longs[0],

f->laddr.sock.sa.sin_pad. Sin_longs[l]);

#endif DEBUG

return(NO ERR);

t

" REVISION HISTORY:

close.c

' MODULE NAME: close()

* MODULE FUNCTION:

TCP/TP4/TCP Translator close() replacement routine. This routine

is named T close() instead of close(), because the Concurrent file

* close.s was not available at this time. If the Concurrent close.s

* file becomes available, it should be implemented similari!y to
" socket.s.

* SPECIFICATION DOCUMENTS:
w

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

" Release 1.0 - 90/09/27

#include "translator.h"

#include <errno.h>

TRAN_memory *TKANm;
int TRANs;

struct sembuf psemop;

struct sembuf vsemop;

int T close(s)

int s;

FD Struct *f;

*/
Make sure descriptor is valid.

if (! check FD(s))

{
errno - EBADF;

perror("close() - Invalid socket descriptor");
return(ERR);

}

f - &(TRANm->FD[(P->fd[s])]) ;

/t

*/

close.c

Make sure descriptor is a socket.

f->socket - TRUE;

if (! f->socket)

(
errno - ENOTSOCK;

perror("close() - Descriptor is not a socket");

return(ERR);

)

./
Shut the socket down, remove the system socket also.

if (f->connected)

shutdown(s, 2);

close(s);

t/
Remove the fd.

P->fd[s] - NONE;

WAIT(TRANs);

f->use count--;

if (! f->use count)

f->active - FALSE;

SIGNAL(TRANs);

connect,c

_. * MODULE NAME: connect()

• MODULE FUNCTION:

" TCP/TP4/TCP Translator connect() replacement routine.

• Specify the remote half of an Internet association -> remote address

• and remote port.

1i

* REVISION HISTORY:

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

* Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

#include "translator.h"

#include <errno.h>

TRAN_memory *TRANm;

int connect(s, name, namelen)

int namelen,

s;

struct sockaddr in *name;

FD Struct *f;

int i, fd;

/*

_t

*/
Make sure descriptor is valid.

if (! check FD(s))

(
errno - EBADF;

perror("connect() - Invalid socket descriptor");

return(ERR) ;

)

f = &(TKANm->FD[(P->fd[s])]);

/*

*/

connect.c

Make sure descriptor is a socket.

f->socket - TRUE;

if (! f->socket)

(
errno - ENOTSOCK;

perror("connect() - Descriptor is not a socket");

return(ERR);

)

/*

*/

Build remote TSAP using the user supplied Interne*

address.

f->raddr.sock.sa - *name;

f->raddr.tsap.len - sizecf(struct sockaddr_in);

/*

*/

If socket is not bound, bind().

if (! f->bound)

(
name->sin_port - O;

if (bind(s,name,namelen) -- ERR)

return(ERR);

)

/*

*/
Make sure this socket has not already been connected.

if (f->connected)

(
errno - EISCONN;

perror("connect() - Socket already connected") ;

return(ERR);

}

/*

t

*/

Check the following error conditions:

address is not available on this machine

address family cannot be used with this socket

connection timed out

connection refused

network unreachable

address already in use

name specifies area outside the process address space

if(0)

(

errno - 0;

perror("connect () - ") ;

return(ERR);

)

t

* Make sure a connection indication has been received if

*/
socket is marked non-blocking.

connect,c

if ((! f->blocking) && (! f->connected))

(
errno - EWOULDBLOCK;

perror("connect() - Non-blocking socket - no available connection");

return(ERR);

)

Build remote NSAP. Convert Internet number to ethernet for NSAP.

f->r_nsap.len - 8;

if (internet to ether(&f->raddr.sock.sa.sin_addr, f->r_nsap.addr) == ERR)
(
errno - 0;

perror("connect() - couldn't resolve Internet->Ethernet") ;
return(ERR);

}

Assign remote port to third part of local tsap. Do this after bind(),

bind() zeros out the third and fourth parts of the address.

f->laddr.sock.sa.sin_pad. Sin_longs[0] - f->raddr.sock.sa.sin_port;

/*

* Zero out pad portion of remote TSAP address.

*/

f->raddr.sock.sa.sin_pad. Sin_longs[0] - 0;

f->raddr.sock.sa.sin_pad. Sin_longs[1] - 0;

#ifdef DEBUG

debug("connect() local tsap: %d %d %d %d %d",

f->laddr.sock.sa.sin_family,

f->laddr.sock.sa.sin_port,

f->laddr.sock.sa.sin addr. S un.S_addr,

f->laddr.sock.sa.sin_pad. Si__longs[0],

f->laddr.sock.sa.sin_pad. Sin_longs[l]);
#endif DEBUG

if (init_session(&f->laddr.tsap,&f->ev) -- ERR)
(
errno - ENOBUFS;

perror("connect() - Couldn't init_session()");
return(ERR);

}

/*

Issue connection request to remote host.

f->machp - (struct Tmachine *) UCONreq(f->ev.msg_queue, &f->laddr.tsap, &f->r nsap,

&f->raddr.tsap, (qos type ") 0, !, 0);
if (! f->machp)

{
errno - 0;

perror("connect() - connection request failed");
return(ERR) ;

connect.c

#ifdef DEBUG

debug("connect() remote addr %d %d %d %d %d",
f->raddr •sock. sa. s in_family,

f->raddr •sock. sa. s in_port,

f->raddr.sock.sa.sin addr. S un.S_addr,

f->raddr, sock. sa. sinbad. Si__longs [0],

f->raddr.sock.sa.sin_pad. Sin_longs [i]) ;

debug ("connect () local

#endif DEBUG

addr %d %d %d %d %d",

f->laddr.sock.sa.sin_family,

f->laddr.sock.sa.sin port,

f->laddr.sock.sa.sin addr. S un.S_addr,

f->laddr.sock.sa.sin_pad. Si__longs[0],

f->laddr.sock.sa.sin_pad. Sin_longs[l]);

*/

If non-blocking and no connection, wait for response connection.

#ifdef DEBUG

debug("connect()

#endif DEBUG

waiting for irst connect response");

while (! f->connected)

check TP4 q(f);

while (f->connected)

check_TP4 q(f);
rv

#ifdef DEBUG

debug("connect()

#endif DEBUG

received first connection");

/*

t

*/

Build new remote TSAP.

the remote's TSAP.

Add our local port as the third part of

f->connected - FALSE;

f->activated - FALSE;

f->raddr.sock.sa.sin_pad. Sin_1ongs[0] - f->laddr.sock.sa.sin_port;

f->rcv_buf->length - 0;

f->activated - TRUE;

*/
Reconnect with new remote TSAP.

f->machp - (struct Tmachine *) UCONreq(f->ev.msg_queue, &f->laddr.tsap, &f->r nsap,

&f->raddr.tsap, (qos_type *) 0, I, 0):

if (! f->machp)

(
errno - 0;

perror("connect() - connection request failed") ;

return(ERR);

}

#ifdef DEBUG

debug("connect() new remote addr %d %d %d %d %d",

#endif DEBUG

connect.c

f->raddr.sock.sa.sin_family,

f->raddr.sock.sa.sin port,

f->raddr.sock.sa.sin_addr. S_un.S_addr,

f->raddr.sock.sa.sin_pad. Sin_longs[0],

f->raddr.sock.sa.sin_pad. Sin_longs[l]);

*/
If non-blocking and no connection, wait for connection.

#ifdef DEBUG

debug("connect: waiting for 2nd accept indication");

#endif DEBUG

while (! f->connected)

check TP4_q(f);

#ifdef DEBUG

debug("connect: ## Connection established to remote");

#endif DEBUG

return(NO ERR);

t

* REVISION HISTORY:

debug.c

t

* MODULE NAME: debug()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator routine to write debug messages to a host

* central logfile.

- SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section
Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

• Release 1.0 - 90/09/27

#include <stdio.h>

void debug(format_str, argl, arg2, arg3, arg4, arg5, arg6)

char

int

*format sir;

argl,

arg2,

arg3,

arg4,

arg5,

arg6;

/* printf format string

/* argl value

/* arg2 value

/* arg3 value

/* arg4 value

/* arg5 value

/* arg6 value

.I
*I
,I
*I
*I
*I
*I

(
FILE *fp;

#ifdef DEBUG

*I
Open log file, if this doesn't work, return.

*I
if ((fp = fopen("/Lan/logfile","a")) -- NULL)

if ((fp - fopen("/dev/null","a")) -- NULL)

return;

/*

*I
Add new line to log file, close the file.

debug.c
fprintf(fp, "%5d: ", gecpid());

fprintf(fp, format_sir, argl, arg2, arg3, arg4, argS, arg6);
fprintf(fp, "\n");

fclose(fp);

#endif DEBUG

}

events.h

_r

* FILE NAME: events.h

* FILE FUNCTION:

This file contains the definition of the various events sent back

from TP4 to the Translator. These definitions are very similar to

the event definitions used in the IBM Session layer. They are

put here so the Translator can define multiple event queues for a

single process easier.

t

e

* REVISION HISTORY:

* FILE MODULES:

* N/A
w

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

m

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

#include "bufflib.h"

#include "transport.h"

Event constants.

#define MAXEVS 5 /* MUST match define in transport.c */

#define DATIND 90 /* T_DATA.indication */

#define DATCON 91 /* T DATA.confirm "/
w

#define EXPIND 92 /* T EXPEDITED DATA.indication */

#define REAREQ 93 /* S SYSTEM_READ.request */
#define UNIIND 94 /* T UNIT DATA.indication "/

0

*/

Event structures.

T_CONNECT.indication parameters

struct conind (

tsap_selector rem_tsap_id; /_ remote transport service user */

nsap_address rem_nsap_addr; /* remote NSAP address */

qos_typ@ qos; /* quality-of-service */

int use_xpd; /* proposed expedited data usage */

};

evenrs.h

I*

*/
T CONNECT.confirm parameters

struct concon (

tsap_selector res_tsap_id; /* responding TSAP address */

nsap_address res_nsap_addr; /* responding NSAP address */

int use_xpd; /* negotiated expedited data usage */

qos_type qos; /* quality-of-service */

);

*

*/
T DATA.indication parameters

struct datind {

int length;

int eotsdu;

};

/* length of TSDU */

/* end of TSDU flag */

/*

* T EXPEDITED DATA.indication parameters

./

struc_ expind {

struct buf *data;

};

/* user data buffer */

/*

*/
S SYSTEM READ.request parameters

struct sreareq {

unsigned char *address;

int length;

};

/* address of data */

/* length of data */

* T_UNIT_DATA.indication parameters

*/

struct uniind {

tsap_selector rem tsap_id; /* remote transport service user */

nsap_address rem__sap_addr; /* remote NSAP address */

qos_type qos; /* quality-of-service */

buf_type data; /* user data buffer */

};

*

*/
Transport event structure.

struct ev {

struct ev *next;

struct ev *prey;

int event;

struct Tmachine *tcep;

union {

struct conind ci;

struct concon cc;

struct datind dr;

struct expind xi;

/* next event on the queue */

/* previous event on the queue */

/* type of event */

/* transport connection identifier */

/* T CONNECT.indication */

/* T CONNECT.confirm */

/* T DATA.indication */

/* T EXPEDITED DATA.indication */

};

s_ruc_ sreareq sr;

s_ruc_ uniind ui;

} un;

events

/_ S SYSTEM READ.request _/

/- T UNIT DATA.indication */

t

./
Transpor_ event queue pointer structure.

struc_ evq {
s_ruc_ ev "first;

struct ev *las_;

/* First event in the queue ./

/* Last even_ in the queue */

typedef struct

int msg_queue;

s_ruct evq evavail;

struc_ evq evqueue;
struct ev events[MAXEVS];

} Event struct;

w

* REVISION HISTORY:

exit.e

• MODULE NAME : exit ()

• MODULE FUNCTION:

• TCP/ISO/TCP Translator exit() replacement routine.

• SPECIFICATION DOCUMENTS:

• /Lan/Translator/Specs

• ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division
Southwest Research Institute

* Release 1.0 - 90/09/27

#include <errno.h>

#include "translator.h"

struct sembuf psemop;

struct sembuf vsemop;

TRAN_memory *TRANm;
in* TKANs;

void exit(status)

int status;

register in* i;

FD Struct *f;

*

*/

Loop through all connections, closing all open sockets.

dummy file descriptor also.

Deactivate any active TSAPs.

for (i-0; i<MAX PFDs; i++)

(

*

If the current fd is a connected or active socket,

remove it from TP4. Make sure to remove the dummy
socket from the system also.

Remove the TP4-session message queue if one exists.

Release the

*/

exit,c

if (check_FD(i))

{
f . &(TRANm->FD[(P->fd[i])]);

if (f->active)

T close(i) ;

)
)

Remove the pid from the Translator shared memory.

WAIT(TRANs):

P->proc - FALSE:

SIGNAL(TRANs):

/*

t

*/

Exit the current program. We must use the exit() routine

because the exit() routine was not yet available from

Concurrent. If the exit.s file ks obtained, the exit()

routine should be renamed and called instead of _exit().

exit(status);

ge osmam.c
tt_tttftttttt_tt_tttttt_ftt_tt_tt_)tt_ttttttttt_tt_tl_tl_t_ttt_tttttt

* FILE NAME: gethostnam.c

* FILE FUNCTION:

* TCP/TP4/TCP Translator get host info replacement routines.

* FILE MODULES:

endhostent()

gethostbyaddr()

gethostbyname()

gethostent()

sethostent()

getpeername()

getsockname() - this is implemented as T_getsockname()

sethostent()

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

" REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

#include <errno.h>

#include <memory.h>
#include "translator.h"

TKAN_memory *TRANm;

FILE *Ht;

int Hf,

H1,

Ho;

/* Host table file pointer */

/* Host table stayopen flag */

/* Host table line number */

/* Host table open flag */

ge osmam.c

t

t

* REVISION HISTORY:

* MODULE NAME: endhostent()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator endhostent() replacement routine.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Da_a Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

void endhostent ()

(

if (Ho)

fclose(Ht);

HI _ 0;

Hf - 0;

HO - FALSE;

)

gethosmam.c

* MODULE NAME: gethostbyaddr()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator gethostbyaddr() replacement routine.

* Query the host table and locate a host entry based on the Interne*

* address specified by the caller. Return a pointer to a host struct.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Speos

* ORIGINAL AUTHOR AND IDENTIFICATION:

* Timothy J. Barton - Software Engineering Section

* Data Systems Department

* Automation and Data Systems Division

* Southwest Research Institute

* REVISION HISTORY:

* Release 1.0 - 90/09/27

struct hostent *gethostbyaddr(addr, fen, type)

char *addr;

in* len,

type;

struct hostent *host;

in, found - FALSE;

*

./
Open the host table.

sethostent(I);

/*

*/

Loop until either the host name is found, or the end

of the host table is found.

while (! found)

{

host - gethostent();

if (host -- NULL)

found - TRUE;

else

if (! memcmp(addr, host->h_addr, 4))

found - TRUE;

}

gcthostnam.c

/t

_r

"/

Close the host table and return the hostent pointer.

this pointer may be NULL.

endhostent();

return(host);

Note:

gethostnam.c

* REVISION HISTORY:

' MODULE NAME: gethostbyname()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator gethostbyname() replacement routine.

* Query the host table and locate a host entry based on the hostname

* specified by the caller. Return a pointer to a host struct.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

" Release 1.0 - 90/09/27

struct hostent *gethostbyname(name)

char "name;

struct hostent *host;

int found - FALSE;

*/
Open the host table.

sethostent(1);

Loop until either the host name is found, or the end

of the host table is found.

while (! found)

{

host - gethostent();

if (host -- NULL)

found - TRUE;

else

if (! strcmp(name,host->h_name))
found - TRUE;

/*

Check aliases also.

gethostnam.c

*

"/

Close the host table and return the hostent pointer.

this pointer may be NULL.

endhostent () ;

return(host);

Note:

V

ge osmam.c

MODULE NAME: gethostent()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator gethostent() replacement routine.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

m

* ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

************************************ >*******t*****_*_***_*****_****/

struct hostent *gethostent()

(
struct hostent *host;

char *asc,

asc str[4],

convert str[3],

entry [I_2] ,

*ptr,

token[132];

in* con*,

i'0;

/*

*/
If the host table is not open, try to open it.

if (! Ho)

if ((Ht-fopen(HOST_TABLE,"r")) -- NULL)

return(NULL);

else

(
Ho - TRUE;

/*

*/
If the file has been previously positioned, reset the position.

if (H1 > 0)

(

while (i < H1)

fscanf(Ht, "%*[^\n]", entry);

}
}

*/

gethostnam,c

Loop until the first valid entry (non-co_nent) or EOF. /

host - NULL;

cont- TRUE;

while (cont)

(
if (fscanf(Ht,"%s",token) "" EOF)

(
cont - FALSE;

break;

)

Hl+÷;

Ignore con_nent lines.

if (token[0] !- '#')

(
cont -- FALSE;

/*

Allocate a host entry structure.

host - (struct hostent *) malloc (sizeof(struct hostent));

if (host !- NULL)

{
/*
* Allocate address space.

-/

host->h_addr - (char *) malloc(4);

host->h_length - 4;

host->h_addrtype - AF_INET;

/*

* Get the first octet of the Internet number.

asc i asc sir;

ptr - token;

while ((*ptr !- ' ') && (*ptr !- NULL))

(
*asc _ *ptr;

asc÷+;

ptr++;

J
*asc - NULL;

host->h_addr[O] - atoi(asc_str);

*

* Get the second octet of the Internet number.

*/
aSC - asc str;

ptr++;

while ((*ptr !- ' ') && (*ptr !- NULL))

(
*asc - "ptr;

asc++;

ptr++;

}
*asc - NULL;

ger osmam.c

host->h_addr[l] -atoi(asc_str);

* Get the third octet of the Internet number.

*/

aSC _ asc_str;

ptr++;
while ((*ptr !- ' ') && (*ptr !- NULL))

{
*asc - *ptr;

asc÷÷;

ptr++;

)
*asc - NULL;

host->h addr[2] - atoi(asc str);

/*

* Get the fourth octet of the Internet number.

*/

ptr++;

sscanf(ptr, "%s", asc_str);

host->h addr[3] - atoi(asc str);

t

*/

Get the ethernet number, store it in a global

and convert its type.

fscanf(Ht, "%s", Host Ether Asc);

for (convert str[2]-'\0', i-0; i<6; i++)

(
memcpy(convert sir, &Host_Ether_Asc[i*2], 2);

Host Ether Int[[] - atoh(convert sir);

}

./
Get the host name.

fscanf(Ht, "%s", token);

host->h name - (char *) malloc(strlen(token)+l);

strcpy(host->h_name, token);

/*

./
Get the aliases.

host->h aliases - NULL;

t

*/
Get the rest of the line and discard.

fscanf(Ht, "%*[^\n]", token);

)
}

else

fscanf(Ht, "%*[^\n]", token);

)

/*

*/
If the stayopen flag is not set, close the file.

if (_ Sf)

(

fclose(Ht);

Ho - FALSE;

)

return(host);

gethosmam.c

v

gethostnam.c

* MODULE NAME : getpeername ()

* MODULE FUNCTION:

TCP/TP4/TCP Translator getpeername() replacement routine.

* SPECIFICATION DOCL_NTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

w

* REVISION HISTORY:

* Release 1.0 - 90/09/27

int getpeername(s, name, namelen)

int namelen,

s;

struct sockaddr in *name:

FD Struct *f;

/*

*/

Test the following error conditions:

s is a file, not a descriptor

no buffers

name is bad address

if (0)

(
errno - ENOTSOCK;

perror("getpeername() - ") ;

return(ERR) ;

}

if (! check FD(s))

{
errno - EBADF;

perror("getpeername() - Invalid socket descriptor");
return(ERR) ;

}

f = &(TRANm->FD[(P->fd[s])]);

gethostnam.c

if (! f->socket)

{
errno - ENOTSOCK:

perror("getpeername() -Descriptor is not a socket");

return(ERR) :

}

/*

Return the remote port.

*name - f->raddr.sock.sa;

return(NO ERR)_

8er_osma_.c

MODULE NAME: T_getsockname()

w

t MODULE FUNCTION:

* TCP/TP4/TCP Translator getsockname() replacement routine. The assembly

* version of getsockname() was not available, so use T_getsockname()

* until the getsockname.s file is obtained from Concurrent.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division
Southwest Research Institute

* REVISION HISTORY:

* Release 1.0 - 90/09/27

in* T getsockname(s, name, namelen)

in* namelen,

s;

struct sockaddr in *name;

FD Struct *f;
0

/*

*/

Test the f_llowing error conditions:

s not valid descriptor

s is a file, not a descriptor

no buffers

name is bad address

if (0)

(

errno - ENOTSOCK:

perror("getsockname() -

return(ERR);

)

") ;

if (! check FD(s))

{
errno - EBADF:

perror("getsockname() - Invalid socket descriptor");

return(ERR) ;

}

ge osmam.c

f - &(TRANm->FD[(P->fd[s])]);

if (! f->socket)

errno - ENOTSOCK_

perror("getsockname() - Descriptor is not a socket");

return(ERR);

J

*/

Return local address.

*name - f->laddr.sock.sa;

return(NO ERR);

ge osmam.c

* REVISION HISTORY:

MODULE NAME: sethostent()

* MODULE FUNCTION:

- TCP/TP4/TCP Translator sethostent() replacement routine.
w

" SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs
w

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systen_ Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

int sethostent(stayopen)

int stayopen;

t

*/

Open host table and setup globals: file pointer, stayopen flag,
last line number.

Ht - fopen(HOST_TABLE,"r");

Hf - stayopen;

HI - 0;

if (Ht !- NULL)

Ho - TRUE;

getservent.c

t

* FILE NAME: getservent.c
w

W

" FILE FUNCTION:
t

- TCP/TP4/TCP Translator "get TCP server" replacement routines.

* FILE MODULES:

endservent()

getservbyname()

getservbyport()

getservent()
setservent()

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

t

" ORIGINAL AUTHOR AND IDENTIFICATION:

t

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

#include <errno.h>

#include <memory.h>
#include "translator.h"

FILE *St; /* Server table file pointer */

int Sf, /* Server table stayopen flag */

Sl, /* Server table line number */

So; /* Server table open flag w/

getservent.c

* MODULE NAME: endservent()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator endservent() replacement routine.

w

SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs
W

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

t

t

* REVISION HISTORY:

* Release 1.0 - 90/09/27

void endservent()

[

* If the server table is open, close it. Reset flags.

if (So)

fclose(St);

S1 - 0:

Sf - 0;

So - FALSE:

getservent.c

* MODULE NAME: getservbyname()

* MODULE FUNCTION:

* TCP/TP41TCP Translator getservbynamel) replacement routine.

- Query the server table and locate a server entry based on the server

* name specified by the caller. Return a pointer to a server struct.

t

" SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

* Timothy J. Barton - Software Engineering Section

, Data Systems Department

. Automation and Data Systems Division

, Southwest Research Institute

* REVISION HISTORY:

* Release 1.0 - 90/09/27

. /

struct servent *getservbyname(name, proto)

char *name,

*pro,o;

struct servent *serv;

in* found - FALSE;

/*

*/
Open the server table.

setservent(I);

*

*/

Loop until either the server name is found, or the end

of the server table is found.

while (! found)

{

serv - getservent();

if (serv -- NULL)

found - TRUE;

else

if (! strcmp(name,serv->s_name))

if (! strcmp(proto, serv->s_proto))

found - TRUE;

}

getservent.c

*

*/

Close the server table and return the servent pointer.

this pointer may be NULL.

endservent () ;

return(serv) ;

Note:

..:_:::::."" ?.i:::! : :

_ _._<*e_
_;,_J ._'_i:_i::i!i_:i:_::iiiiiI::

getservent.c

* REVISION HISTORY:

************************************ ***********************************

* MODULE NAME : getservbyport ()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator getservbyport() replacement routine.

* Query the server table and locate a server entry based on the port

* specified by the caller. Return a pointer to a server struct.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

struct servent *getservbyport(port, proto)

int port;

char *proto;

struct servent *serv;

int found - FALSE;

/*

*/
Open the server table.

setservent(1);

/*

*/

Loop until either the server port is found, or the end

of the server table is found.

while (! found)

{

serv - getservent();

if (serv -- NULL)

found - TRUE;
else

if (port -- (int) serv->s_port)

if (! strcmp(proto, serv->s_proto))
found - TRUE;

getservent.c

/*

s_

*/
Check aliases also.

/*

*/

Close the server table and return the servent pointer.
this pointer may be NULL.

endservent();

return(serv);

Note:

getservent,¢

* MODULE NAME : getservent ()

* MODULE FUNCTION:

* TCP/TP41TCP Translator getservent() replacement routine.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

w

* ORIGINAL AUTHOR /_ND IDENTIFICATION:
W

* REVISION MISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

struct servent *getservent()

(
struct servent *serv;

char token[132];

int cont,

i-0;

/*

*/
If the server table is not open, try to open it.

if (! So)

if ((St-fopen (SERV_TABLE, "r")) -- NULL)

return(NULL);

else

(
So - TRUE;

/*

*/
If the file has been previously positioned, reset the position.

if (Sl > 0)

{
while (i < Sl)

fscanf(St, "%*[^\n]", token);

}
)

/*

*/
Loop until the first valid entry (non-con_nent) or EOF.

serv - NULL;

cont - TRUE;

while (cont)

(

getservent.c

if (fscanf(St,"%s",token) -- EOF)

(
cont - FALSE;

break;

}

SI++;

./
Ignore comment lines.

if (token[0] !- '#')

(
cont - FALSE;

/*

*/
Allocate a server entry structure.

serv- (struct servent *) malloc (sizeof(struct servent)) ;

if (serv !-NULL)

(

/*

*/
Get the server name.

serv->s name - (char *) malloc(strlen(token)+l);

strcpy(serv->s_name, token)7

*

*/
Get the server port.

fscanf(St, "%d", &serv->s_port);

/*

* Get the server protocol.

*/

fscanf(St, "%c", token)7

fscanf(St, "%s", token)7

serv->s proto - (char *) malloc(strlen(token)+l);

strcpy(serv->s_proto, token);

/*

*/
Get the server aliases.

serv->s aliases - NULL;

/*

*/
Get the rest of the line and discard.

fscanf(St, "%*[^\n]", token) ;

}
)

else

fscanf(St, "%*[^\n]", token);

/*

*/

getservent.c

If the stayopen flag is not set, close the file.

if (! Sf)

(
fclose(St);

So - FALSE;

)

return(serv);

getservent.c

--_ * MODULE NAME: setservent()

• MODULE FUNCTION:

• TCP/TP4/TCP Translator setservent() replacement routine.

W

• SPECIFICATION DOCUMENTS:

• /Lan/Translator/Specs

• ORIGINAL AUTHOR AND IDENTIFICATION:

w

e

w

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

int setservent(stayopen)

int stayopen;

/*

*/

Open server table and setup globals: file pointer, stayopen flag,
last line number.

St - fopen(SERV_TABLE,"r");

Sf = stayopen;

Sl = 0;

if (St !- NULL)

So - TRUE;

* REVISION HISTORY:

getsockopt.c

/******_.tt***_**************_*_*< ***********************************

* FILE NAME: getsockopt.c

* FILE FUNCTION:

* TCP/TP4/TCP Translator getsockopt(), setsockopt() replacement routines.

* FILE MODULES:
t

* getsockopt() - not implemented currently

* setsockopt()

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division
Southwest Research Institute

* Release 1.0 - 90/09/27

#include <errno.h>

#include "translator.h"

TKAN_memory *TKANm;

getsockopt.c

- * MODULE NAME: setsockopt()

• MODULE FUNCTION:

• TCP/TP4/TCP Translator setsockopt() replacement routine.

• SPECIFICATION DOCUMENTS:

• /Lan/Translator/Specs

ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

W

* REVISION HISTORY:

int setsockopt(s, level, optname, optval, optlen)

int level,

optlen,

optname,

s;

char *optval;

FD Struct *f;

int rc - NO_ERR;

*

*/
Make sure descriptor is valid.

if (! check FD(s))

{
errno - EBADF;

perror("setsockopt() - Invalid socket descriptor");

return(ERR);

}

f = &(TRANm->FD[(P->fd[s])]);

/*

* Make sure descriptor is a socket.
*/

if (! f->socket)

{
errno - ENOTSOCK;

perror("setsockopt() - Descriptor is not a socket");

/*

*/

return(ERR);

getsockopt.c

Check the following error conditions:

named option is not in effect

named option is unknown at the specified level

reference to area outside of address space

if (0)

{
errno - EINVAL;

perror("setsockopt() -

return(ERR):

)

") ;

/*

*/
Set no-wait, no-block option on this socket.

switch (level)

{
case SOL SOCKET :

switch (optname)

{
case NO BLOCK :

f->blocking - FALSE;

break;

case SO DEBUG :

case SO DONTLINGER :

break;

}
break;

default :

errno - EINVAL;

perror("setsockopt() - Invalid option specified");

rc - ERR;

break;

default :

errno - EINVAL;

perror("setsockopt() - Invalid level specified") ;

rc - ERR;

break;

return(rc);

Hsten.¢

* MODULN NAME: listen()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator listen() replacement routine.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

w

" REVISION HISTORY:

#include <errno.h>

#include "translator.h"

TRAN_memory *TRANm;

int listen(s, backlog)

int backlog,

s;

FD Struct *f;

*

*/
Make sure descriptor is valid.

if (! check FD(s))

{
errno - EBADF;

perror("listen() - Invalid socket descriptor");

return(ERR);

)

f I &(TRANm->FD[(P->fd[s])]);

*/
Make sure descriptor is a socket.

if (! f->socket)

(
errno - ENOTSOCK;

Iisten.c

perror("listen() - Descriptor is not a socket");

return(ERR);

)

/*

*/
Make sure this type of socket supports a listen() call.

if (! f->listen)

(
errno - EOPNOTSUPP;

perror("listen() - Socket type does not support listen()");

return(ERR);

)

else

f->listen - ACTIVE;

#ifdef DEBUG

debug("listen() - %d %d %d %d %d",

f->laddr.sock.sa.sin_family,

f->laddr.sock.sa.sin_port,

f->laddr.sock.sa.sin_addr. S_un.S_addr,

f->laddr.sock.sa.sin_pad. Sin_longs[0],

f->laddr.sock.sa.sin_pad. Sin_longs[l]);

#endif DEBUG

Initialize this TSAP.

if (init_session(&f->laddr.tsap,&f->ev) -- ERR)

(
errno - ENOBUFS;

perror("listen() - Couldn't init_session()");

return(ERR);

)

*

*/
Wait for a connection indication on this VC.

while (! f->connected)

check_TP4_q(f) ;

return(NO ERR);

w

* REVISION HISTORY:

read.c

* MODULE NAME: read()
_ W

* MODULE FUNCTION:

" TCP/TP4/TCP Translator read() replacement routine.
w

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

#include "translator.h"

#include <errno.h>

int read(d, buf, nbytes)

int d;

char *buf;

unsigned nbytes;

/*

*/

See if the system has a socket, if so, then use the

Translator recv() function to read the data from the

TP4 VC. If the system does not have a socket, then

read the data from the file using the standard

RTU read() function.

if (getsockopt(d, SOL_SOCKET,SO_DEBUG, 0,0) -- ERR)

if ((errno -- EBADF) J I (errno -- ENOTSOCK))

return(t read(d,buf,nbytes));

return(recv(d, buf,nbytes,0));

PRECEDING PAGE BLANK NLJi FIL,ME_

I'_CV.C

* FILE NAME: recv.c

* FILE FUNCTION:

* File contains the TCP/TP4/TCP Translator socket "receive" data routines.

* FILE MODULES:

* recv()

* recvfrom()

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

*

* ORIGINAL AUTHOR /_q_ IDENTIFICATION:

* Timothy J. Barton - Software Engineering Section

* Data Systems Department
* Automation and Data Systems Division

* Southwest Research Institute

J

#include <memory.h>

#include <errno.h>

#include "translator.h"

TKAN_memo ry *TRANm;

rccv.c

___ * MODULE NAME : recv ()

• MODULE FUNCTION:

• TCP/TP4/TCP Translator recv() replacement routine.

• SPECIFICATION DOCUMENTS:

• /Lan/Translator/Specs

• ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

************************************************************************

int recv(s, bur, len, flags)

int flags,

len,

s;

char *buf;

FD Struct *f;

struct buf *rcv buf;

char *bptr;

int rc,

tc;

/*

*/
Make sure descriptor is valid.

if (! check FD(s))

{
errno = EBADF;

perror("recv() - Invalid file/socket descriptor");

return(ERR);

)

f = &(TRANm->FD[(P->fd[s])]);

*

*/
Make sure descriptor is a socket.

if (! f->socket)

{

recv.c

errno - ENOTSOCK;

perror("recv() -Descriptor is not a socket");

return(ERR);

}

/*

*

*

*/

Check the following error conditions:

receive interrupted by delivery of a signal

data to be received in protected address space

if (0)

(
errno _ EFAULT;

perror("recv() - ");

return(ERR);

)

/*

*/
If the caller requested no data, oh well.

if (! len)

return(len);

/*

*

,,/

See if there is enough data in the receive buffer to satisfy

the current request. If so, copy the data from the receive

buffer to the caller, and update indicators.

rcv bur - f->rcv bur;

bptr - bur;

rc - 0;

if (len <s rcv_buf->length)

{
rc - len;

memcpy(buf, f->rptr, rc);

f->rptr +- rc;

rcv_buf->length -s rc;

errno = 0;

#ifdef DEBUG

debug("recv: len %d\n",f->rcv_buf->length);

#endif DEBUG

return(rc);

)

/*

*/
See if there is some data in the receive buffer.

if (rcv_buf->length > 0)

{

rc = rcv_buf->length;

memcpy(bptr, f->rptr, rc);

rcv_buf->length _ 0;

bptr +- rc;

}

/*

*/
Make sure we are still connected. If not, return 0 data.

rccv.c

if (! f->connected)

{
errno - 0 ;

return(0) ;

}

/*

*/
Issue data receive request.

if (UDATrcv(f->ev.msg queue, f->machp, rcv_buf->addr, TP BUF, 0))

{
errno = EFAULT;

perror("recv() - UDATrcv failed") ;

return(ERR) ;

)

f->rptr = (char *) rcv_buf->addr;

/*

*/

Make sure data is available if socket is marked as non-blocking.

if (0) /* if ((! f->blocking) && (! f->data)) */

(
errno - EWOULDBLOCK;

perror("recv() - Non-blocking socket - no available data");

return(ERR);

}

*

* Wait for data indication.

*/

while ((! f->data) && (f->connected))

check_TP4_q(f);

*

*

*

*/

If a disconnect is received, return 0 to caller to indicate no

more data from socket, otherwise clear data received flag.

if (! f->connected)

{
errno - 0;

return(rc);

}
else

f->data = FALSE;

*

*/

If the request size - number of bytes already loaded is less than

the number of bytes received, then copy to the caller's buffer

only as many as they want.

if ((len-rc) < roy buf->length)

tc = len-rc;

else

tc = rcv_buf->length;

memcpy(bptr, f->rptr, tc);

rcv_buf->length -= tc;

f->rptr +- tc;

recv,c i

rc +- tc;

/*

*/
Return the number of data bytes to the caller.

errno - O;

return(rc);

I'eCV.C

* REVISION HISTORY:

***********************W***W**W***< ***********************************

- MODULE NAME: recvfrom()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator recvfrom() replacement routine.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

[nt recvfrom(s, buf, len, flags, name, namelen)

int flags,

fen,

namelen,

s;

char *buf;

struct sockaddr in *name;

FD Struct *f;

/*

*/
Make sure descriptor is valid.

if (! check FD(s))

(
errno _ EBADF;

perror("recvfrom() - Invalid socket descriptor") ;

return(ERR);

}

f = &(TRANm->FD[(P->fd[s])]);

/*

*/
Make sure descriptor is a socket.

if (! f->socket)

{
errno - ENOTSOCK;

perror("recvfrom() - Descriptor is not a socket");
return(ERR);

recv.c

/*

If not connected, connect.

if (! f->connected)

s - accept(s, name, &namelen);

return(recv(s, buf ,len, flags));

:i: i send.c

* FILE NAME: send.c

* FILE FUNCTION:

* File contains the TCP/TP4/TCP Translator socket "send" data routines.

* FILE MODULES:

* send()

* sendto ()

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

*

* ORIGINAL AUTHOR /_D IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute
*

*

* REVISION HISTORY:

#include <memory.h>

#include <errno.h>

#include "translator.h"

TRAM_memory *TRANm;

send:c

* MODULE NAME: send()

* MODULE FtrNCTION:

* TCP/TP4/TCP Translator send() replacement routine.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

*

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

************************************ ************************************

int send(s, msg, fen, flags)

int flags,

fen,

s;

char *msg;

FD Struct *f;

struct buf *snd buf;

int rc;

*

*/
Make sure descriptor is valid.

if (! check FD(s))

{
errno -- EBADF;

perror("send() - Invalid socket descriptor") ;

return(ERR) ;

}

f m &(TRANm->FD[(P->fd[s])] 1;

if (f -- NULL)

(

perror("send() - file descriptor is NULL");

return(ERR);

)

/*

send.c

* Make sure descriptor is a socket.

*/

if (! f->socket)

{
errno = ENOTSOCK;

perror("send() - Descriptor is not a socket");

return(ERR);

)

/*

*

*

*/

Check the following error conditions:

invalid caller address space

atomical message to big for socket

non-blocking socket

if (0)
(
errno = EFAULT;

perror("send() - ");

return(ERR);

}

/*

*/

If there are more bytes to send than our TP4 buffer will allow,

only send as many as TP4 will handle.

snd buf - f->snd buf;

if (len > TP BUF)

{

rc = TP_BUF;

errno = 0;

perror("send: fen bigger than buffer");

}
else

ro = len;

/*

*/
Load send buffer with data.

bcopy(msg, snd_buf->addr, rc);

if (UDATreq(f->ev.msg_queue, f->machp, snd_buf->addr, rc, I, 0))

{
errno - EFAULT;

perror("send() - UDATreq failed");

return(ERR);

}

*

*/
Wait for data confirmation.

while ((! f->data) && (f->connected))

check_TP4_q(f);

*

*

*

*/

If a disconnect is received, return 0 to caller to indicate no

more data from socket, otherwise clear data send flag.

send.c

if (! f->connected)

{
errno - O;

return(0);

)
else

f->data - FALSE;

*/
Return the number of data bytes to the caller.

errno - O;

return(rc);

v

* REVISION HISTORY:

send.c

* MODULE NAME: sendto ()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator sendto() replacement routine.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* Release 1.0 - 90/09/27

int sendto(s, msg, len, flags, name, namelen)

int flags,

len,

namelen,

s;

char *msg;

struct sockaddr in *name;

FD Struct *f;

/*

* Make sure descriptor is valid.

*/

if (! check FD(s))

(
errno = EBADF;

perror("sendto() - Invalid socket descriptor");

return(ERR);

}

f = &(TRANm->FD[(P->fd[s])]);

*

*/
Make sure descriptor is a socket.

if (! f->socket)

{
errno z ENOTSOCK;

perror("sendto() - Descriptor is not a socket");

return(ERR);

}

/*

If not connected, connect.

if (! f->connected)

connect(s, name, namelen);

return(send(s,msg, len, flags)) ;

send, e

* REVISION HISTORY:

shutdown.c

* MODULK NAME: shutdown()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator shutdown() replacement routine.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

#include <errno.h>

#include "translator.h"

TRAN_memory *TKANm;

int shutdown(s, how)

int how,

s;

FD Struct *f;

in[index;

*/
Make sure descriptor is valid.

if (! check_FD(s))

{
errno = EBADF;

perror("shutdown() - Invalid socket descriptor");

return(ERR);

}

f = &(TRANm->FD[(P->fd[s])]);

/*

*/

Make sure s is a socket.

if (! f->socket)

{

shutdown.c

errno - ENOTSOCK;

perror ("shutdown () -Descriptor is not a socket");

return(ERR);

)

/*

*/
Temporary fix, make sure all data has been sent before disconnecting.

/*DEBUG*/

if(l)

sleep(l) ;

/*

*/
Free the buffers.

bfree(f->rcv buf);

bfree(f->snd buf);

/*

*/

Issue disconnect. If a message queue was created for this

connection, delete it from the system and clear it.

tsap_disconnect(f->machp, f->ev.msg_queue);

tsap_deactivate(&(f->laddr.tsap), f->ev.msg_queue);

if (f->ev.msg_queue)

(

msgctl(f->ev.msg_queue, IPC_RMID, 0);

f->ev.msg_queue - 0;
)

/*

*/
Mark socket descriptor as disconnected.

f->connected - FALSE;

f->activated - FALSE;

socket:c

* MODULE NAME: socket()

*

* MODULE FUNCTION:

* TCP/TP4/TCP Translator socket() replacement routine.

* ASSUMPTIONS:

* The P pointer (process table pointer) is initialized within

* socket() and should always point to the current pid process

* within the whole process.

*

*

* REVISION HISTORY:

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

*

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

#include "translator.h"

#include <errno.h>

/*

*/
Translator globals.

TRAN_memory *TRANm = NULL;

int Init = 0;

struct sembuf psemop = { SEMNUM, -i, 0 };

struct sembuf vsemop = { SEMNUM, i, 0 };

./
socket()

int socket(af, type, protocol)

int af, /* af - address family */

type, /* com type - stream, data gram, raw */

protocol; /* com protocol */

int fd;

sockct.c

*/
Make sure family is Internet.

if (af !- AF INET)

{
errno = EAFNOSUPPORT;

perror("socket() - Invalid address family: %d", af)7

return(ERR);

)

/*

Make sure type is not raw.

if (type -- SOCK_RAW)
(
errno - ESOCKTNOSUPPORT;

perror("socket() - Invalid type: %d", type)7

return(ERR);

}

*/
Check protocol.

if (protocol !- 0)

{
errno -- EPROTONOSUPPORT;

perror("socket() - Invalid protocol: %d", protocol) ;

return(ERR);

)

/*

*/

Try to attach to LAN shared memory.

this process.

Initialize session buffers for

if (! Init)

(
if (LANmat() == NULL)

{
errno _ ENOBUFS;

perror("socket() - Couldn't get LAN shared memory

perror("socket() - Are LANdaemon and TP4 running?

return(ERR)7

)

") ;

") :

if (init_buffers(8,TP_BUF) _- ERR)

(

errno - ENOBUFS;

perror("socket() -Couldn't init buffers()\n");

return(ERR) ;

)

/*

*/
Attach to the translator shared memory.

if ((TRANm-TRAN_attach()) =_ NULL)

{
errno - ENOBUFS;

perror("socket() - Couldn't attach to Translator shared memory");

return(ERR) ;

}

socket.c

Init = TRUE;

}

#ifdef DEBUG

debug("socket() - attached to LAN memory");

#endif DEBUG

/*

*/

If the current process is not in the translator process table,

add it. Save the process table index for this process.

Pidx = TRAN_add_proc(getpid()) ;

if (Pidx -= ERR)

(
errno - EMFILE;

perror("socket () - No available process structure");

return(ERR);

)

/*

*/

Make sure there is an available descriptor in the table. If

the system uses more sockets than our table allows, it will

be detected here.

P = (Proc_Struct *) & (TRANm->Proc[Pidx]) ;

if (TRAN_test_pfd(PFD_ANY))

(
errno - EMFILE;

perror("socket() - No available file descriptors");

return(ERR);

)

*

Get a new system socket and initialize a table entry for the new

Translator socket.

fd = TRAN_get_sock(type, af, protocol, GET_BUF);

if (fd == ERR)

{
errno - EMFILE;

perror("socket() - Couldn't get socket descriptor");

return(ERR) ;

}

#ifdef DEBUG

debug("socket() - created socket %d",fd);

#endif DEBUG

Return the socket descriptor number.

return(fd) ;

* REVISION HISTORY:

.... translator,h:

************************************ ***********************************

*

* FILE NAME: translator.h

* FILE FIINCTION:

* This file contains the structures and constants used by the

* TCP/TP4/TCP Translator.

* FILE MODULES:

* N/A
*

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs
*

* ORIGINAL AUTHOR/_,'-D IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

#include <stdio.h>

#include <ctype.h>
#include <netdb.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/socket.h>

#include <sys/utsname.h>

#include <net/in.h>

#include "address.h"

#include "transport.h"

#include "bufflib.h"

#include "Ttypes.h"
#include "Tdefn.h"

#include "session.h"

#include "states.h"

#include "LANshrmem.h"

#include "events.h"

/*

*/
Translator constants.

#ifndef TRUE

#define TRUE

#endif

1

#ifndef FALSE

#define FALSE
#endif

translator.h

#define ACTIVE 2

#define AFI 0x49

#define ERR -I

#define GET BUF 1

#define LSAP 0xA8

#define MAX FDS 20

#define MAX PFDs i0

#define MAX PROCs 5

#define MAX VCs 5

#define NONE -I

#define NO BLOCK I00

#define NO ERR 0

#define NO OPEN 0

#define NO SOCKET 0

#define NO BUF 0

#define PFD ANY 1

#define SYS FD 0

#define SOC FD 1

#define TP BUF 8000

#define TRANm KEY 0x77100000

#define TRANs KEY 0x77200000

#define YES OVEN 1

#define YES SOCKET 1

/* Max number file descriptors

/* Max num fd per process

/* Max number active trans processes

/* Max number active trans VCs

./
*/

,/
*/

#define HOST TABLE

#define SERV TABLE

"/Lan/Config/hosts"

"/etc/net/services"

/*

./
Semaphore processing.

#define SEMNUM 0

#define WAIT(s) semop(s, &psemop, I)

#define SIGNAL(s) semop(s, &vsemop, 1)

/*

* Check these, they may not be needed due to new flags
* in socket structure.

*/

int xpdrcvd;

/*

* Typedef's.

*/

typedef unsigned short IP_port;

typedef int FD_Index;

/*

* File descriptor structure maintained for each translator socket.
*/

typedef struct

{
int active,

activated,

blocking,

bound,

connected,

/* struct in use ?

/* TSAP activated flag

/* Block enable flag

/* "Bound" flag

/* "Connected" flag

*/
*/
*/
*/
*/

_::7:.:.¸:k: .

data,

domain,

listen,

protocol,

socket,

type,

use count;

nsap_address l_nsap,

r__nsap;

struct bur *rcv_buf,

*snd buf;

char *rptr,

*sptr;

struct Tmachine *machp;

Event struct ev;

union

{

tsap_selector tsap;

struct ts addr

{
int len;

struct sockaddr_in sa;

} sock;

} laddr, raddr;

} FD_Struct;

translator.h
/* Data indication from TP4 */

/* Can socket be "listened" on */

/* Is descriptor a socket (yes) */

/* Socket type - stream, etc. */

/* num of users */

/* Local host NSAP */

/* Remote host NSAP - see machp */

/* Data receive buffer */

/* Data send buffer */

/* Data receive buffer pointer */

/* Data send buffer pointer */

/* remote host machine ptr */

/* dummy place holder */

/* Local socket addr INET style */

typedef struct

{
int proc;

FD Index fd[MAX PFDs];

} Proc Struct;

*/

Translator shared memory structure.

typedef struct

{
Proc Struct Proc[MAX PROCs];

FD Struct FD [MAX FDs];

IP__port next_port;

} TRAN__memory;

/*

*/

Translator globals.

Proc Struct *P;

int Pidx;

IP__port *Tsap_Port ;

char Host Ether Asc[16],

Host Ether Int [6] ;

extern char *LANm;

extern int ISOlogging;

/*

*/

Translator function prototypes.

/* ptr to port portion tsap */

/* gethostent() - with pad */

/* gethostent() */

/* Ptr to LAN shared memory */

/* ISOlog active flag */

FD_Index TKAN_get__pfd();

T93_N_memory *TRAN attach () ;

- int TRAN_add_proc () ,
TRAN next fd(),

TRAN_test_pfd () ,

atoh () ,

check_TP 4_q () ;

void debug () ;

extern struct buf *balloc();

translator, h

: : sport.c

* FILE NAME:

*

* FILE FUNCTION:

transport.C

File contains the TCP/TP4/TCP Translator routines which perform very

Transport level specific functions.

Some of the code in this file has been closely modeled on the IBM Session

interface software. The functions in this file utilize a message queue

pointer to support multiple VCs in a single process.

* FILE MODULES:

tsap_activate()

tsap_deactivate()

tsap_disconnect()

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

#include "translator.h"

/* system include files */

#include <sys/param.h>

#include <sys/msg.h>

#include <signal,h>

#include <fcntl.h>

#include <errno.h>

/* network include files */

#include "system.h"

#include "uio.h"

#include "session if.h"

#include "config,h"

#include "manifest.h"

#include "commands.h"

/* Unix standard system parm definitions */

/* Unix standard message definitions */

/* Unix standard signal definitions */

/* Unix standard file control definitions */

/* Unix standard errno value definitions */

/* Network system definitions */

/* ipc structure definitions */

/* Session interface definitions */

/* Session configuration

/* Network constant definitions

/* Session ipc command definitions

./

./
,/

extern int tp4_qid;

extern int ses mem size;

/* tp4's message qid ./

extern struct tp4msgin rmsg;
extern char *base addr;

anspo.c

/* Request msg to tp4 ,/

V

extern Tconind() ;

extern Tconcon() ;

extern Tdisind() ;

extern Tdatind() ;

extern Tdatcon() ;

extern Texpind() ;

extern Tuniind() ;

extern Tsreareq() ;

extern Tswrireq() ;

/* T CONNECT.indication event handler */

/* T CONNECT.confirm event handler */

/* T DISCONNECT.indication event handler */

/* T DATA.indication event handler */

/* T DATA.confirm event handler */

/* T EXPEDITED DATA.indication event handler */

/* T UNIT DATA.indication event handler */

/* S SYSTEM_READ.request event handler */ /* M002 */

/* S_SYSTEM_WRITE.request event handler */ /* M002 */

TRAN_memory *TRANm;

......_ansportc

* MODULE NAME: tsap_activate()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator TSi_ activate function.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

int tsap_activate(tsap, msg_queue)

tsap_selector *tsap;

int msg_queue;

/*

*/
Activate our Transport Service Access Point (TSAP).

if (TSUadd(tsap, msg_queue, Tconind, Tconcon, Tdisind, Tdatind, Tdatcon,

Texpind, Tuniind, Tsreareq, Tswrireq) < 0) /* M002 */

{
perror("tsap_activate: could not register TSAP");

return(-l);

}

transport.c

-._ * MODULE NAME: tsap_deactivate()

• MODULE FUNCTION:

• TCP/TP4/TCP Translator tsap deactivate function.

• SPECIFICATION DOCUMENTS:

• /Lan/Translator/Specs

• ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

int tsap_deactivate(tsap, msg_queue)

tsap_selector

int

tsap; / pointer to TSAP address */

msg_queue;

register struct tp4msgin

register struct Treq

/*

*/

mp = &rmsg; / ptr to outgoing message struct */

*rp - (struct Treq *)&mp->mag.req;

/* ptr to transport request * /

Initialize the deactivate message.

mp->type I SES_REQ;

rp->userpid I getpid();

rp->qid - msg_queue;

rp->loc_tsap_id - *tsap;

rp->cmd - TDEACTIVATE;

Send the message to transport.

/*

*/

msgsnd (tp4_qid, & rmsg, sizeof (rmsg) , 0) ;

/*

,

,

*/

Wait on the return code from transport. Don't

care what the result is.

(void) tp4_resp(FASTTIMER, msg_queue);

}

transpor¢,c :

J

transport.c

* MODULE NAME: tsap_disconnect()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator TSAP disconnect function.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

*

*

* ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

int tsap_disconnect(machp, msg_queue)

struct Tmachine *machp;

int msg_queue;

register struct tp4msgin

register struct Treq

mp - &rmsg; / ptr to outgoing message struct */

*rp - (struct Treq *)&mp->msg.req;

/* ptr tO transport request * /

/*

*/
Initialize the deactivate message.

mp->type = SES_KEQ;

rp->machp - machp;

rp->address - NULL;

rp->userpid m getpid();

rp->qid = msg_queue;

rp->reason - 128;

rp->cmd _ TDISREQ;

/*

*/
Send the message to transport.

msgsnd (tp4_qid, rap, sizeof (rmsg) , 0) ;

, utils.c i :

* FILE NAME: utils.c

* FILE FUNCTION:

* TCP/TP4/TCP Translator utilities.

* FILE MODULES :

atoh ()

check FD ()

check_TP 4_q ()
ether to internet()

internet to ether()

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs
*

* ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

#include <fcntl.h>

#include <errno.h>

#include <memory.h>

#include "translator.h"

/*

* Translator globals.

,!

TKAN_memo ry

extern struct evq

extern struct ev

*TRANm;

evavail,

evqueue;

events[MAXEVS];

/< #/
("_I

utils,e

* Name: atoh *

* Synopsis: int atoh(s) *

* char *s; string to convert *

* Description: Convert a string containing a hexadecimal *

* number entered by the user into its integer *

* equivalent. *

* Other Inputs: none. *

* Outputs: *

* Return Value: decimal equivalent of hexadecimal string *

* Interfaces: none. *

* ,

* Resources Used: none. *

* .

* Limitations: none. *

* Assumptions: Assumes hex string contains only upper case *
* letters. *

*

int atoh (s)

char *s;

register int i,n;

n = 0;

for(i=0; (isdigit (s[i])) I I (s[i]>--'A' && s[i]<='F'); ++i)

(

if (isdigit (s[i]))

n = 16 * n + s[i] - '0';

else

n = 16 * n + s[i] - 'A' + i0;

}
return(n);

* REVISION HISTORY:

mi ut,ls.c

* MODULE NAME: check FD ()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator check FD (check file descriptor) utility. This

* function determines whether [he integer number passed in is a valid FD

* for the current process.

* returns: 0 - not a valid fd or error detected

* 1 - there is a file descriptor pointer

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

int check FD(fd)

int fd;

int idx;

/*

*/
Make sure this process is attached to translator shared memory.

if (TRANm -- NULL)

{
if (LANmat() -- NULL)

{
perror("check_FD() - not attached to TRANm");

return(0);

}

if ((TRANm-TRAN_attach()) -- NULL)

{

perror("check_FD: Couldn't attach to shared memory");

return(0);

}
)

/*

*/
Make sure this process is in the descriptor table.

idx - TRAN add_proc(getpid()) ;

if (idx == ERR)

{

utils.e

perror("check_FD: Couldn't add process") ;

return(0);

}

*

*/
Set a pointer to this process.

P = (Proc Struct *) &(TRANm->Proc[idx]) ;

/*

*/

Return a logical which indicates if there is a socket that we are

managing at this FD.

if (P->fd[fd] -- NONE)

return(0) ;

else

return(1);

utils.c

* MODULE NAME: check_TP4_q()

* MODULE FUNCTION:

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

TCP/TP4/TCP Translator check_TP4_queue utility. This routine checks

a VC's message queue from TP4 to see if any events have been recevied.

If a TP4 event is received, it processes it accordingly.

This routine is modeled on the routine by the same name that is used

within the IBM Session layer.

This function should be moved into the new transport.c file.

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

* REVISION HISTORY:

register struct Smachine *s;

register struct ev *ev;

register struct Tmachine *rap;

struct bur *bp;

buf_type bf;

int i;

/*

*/

Check the session indication message queue for

incoming transport events.

ck_ind_queue (& (fp->ev)) ;

/*

*/
Scan queue of incoming transport layer events.

while ((ev - fp->ev.evqueue.first) !- (struct ev *) &(fp->ev.evqueue))

{

utils,c

/*

*/
Determine the event type and process it.

mp = ev->tcep;
switch (ev->event)

{
case CONIND: /* T CONNECT.indication event */

debug("Received connect indication");

debug("Issuing connect response");

/*

*/
Pull data from connection indication struct.

fp->raddr.tsap - ev->un.ci.rem_tsap_id;

fp->r_nsap _ ev->un.ci.rem_nsap_addr;

/*

*/
Connect indication received, issue connect response.

UCONres(mp, &ev->un.ci.qos, ev->un.ci.use_xpd, 0);

fp->machp - mp;

fp->connected - TRUE;

break;

case CONCON: /* T CONNECT.confirm event */

debug("Received connect confirm");

fp->connected - TRUE;

break;

case DATIND: /* T DATA.indication event */

debug("Received data indication length %d", ev->un.dt.length);

fp->data++;

fp->rcv_buf->length - ev->un.dt.length;
break;

case DISIND: /* T DISCONNECT.indication event */

debug("Received disconnect indication");

fp->connected m FALSE;

break;

case DATCON: /* T DATA.confirm event */

debug("Received data confirm");

fp->data++;

break;

case EXPIND: /* T EXPEDITED DATA.indication event */

bp m (struct buf *)ev->un.xi.data;

debug("Received expedited data of length %d", bp->length);

bdump(bp->addr, bp->length, "\texp data rcvd");

bfree (bp) ;

xpdrcvd++;

break;

i utilsic :

default :

debug("Bad transport event-%d, tcep-%x", ev->event, rap);

fatal () ;

break;

/* Release event structure */

QMove(ev, &(fp->ev.evavail)) ;

}

return(O) ;

utils, c

---_ * MODULE NAME: ether to internet()

• MODULE FUNCTION:

L

TCP/TP4/TCP Translator utility to convert an ethernet number to an

Internet number. This routine uses the hostent functions which access

the host table at: /Lan/Config/hosts.

* SPECIFICATION DOCUMENTS:

*

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

* REVISION HISTORY:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

int ether to internet(ether, inter)

char inter[4],

ether[6];

struct hostent *host;

int found = FALSE,

rc;

/*

*/
Open the host table.

sethostent(1);

/*

*

*/

Loop until either the host name is found, or the end

of the host table is found.

while (! found)

{

host = gethostent();

if (host == NULL)

(
rc = ERR;

found _ TRUE;

)
else

if (! memcmp(ether,Host_Ether_Int, 6))

utils c

t
rc - NO ERR;

found - TRUE;

memcpy (inte r, host ->h_addr, 4) ;

)

/*

*/

Close the host table and return the hostent pointer.

this pointer may be NULL.

endhostent();

return(rc);

Note:

utils2c :

* MODULE NAME: internet to ether()

* MODULE FUNCTION:

* TCP/TP4/TCP Translator utility to convert an Internet number to an

* ethernet number. This routine uses the hostent functions which access

* the host table at: /Lan/Config/hosts.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

* I_VISION HISTONY:

* Release 1.0 - 90/09/27

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

-"---int internet to ether(inter, ether)

char inter[4],

ether[6];

struct hostent *host;

int found = FALSE,

rc;

/*

*/
Open the host table.

sethostent(1);

/*

*/

Loop until either the host name is found, or the end

of the host table is found.

while (! found)

(

host = gethostent();

if (host == NULL)

(
rc = ERR;

found = TRUE;

)
else

if (! memcmp(inter,host->h_addr, 4))

rc - NO EP_;

found - TRUE;

ether[0] = AFI;

utils,e

ether [7] - LSAP;

memcpy (ðer [i], Host_Ether_Int, 6) ;

}

/*

*/

Close the host table and return the hostent pointer.

this pointer may be NULL.

endhostent();

return(rc);

Note:

* REVISION HISTORY:

*

wfite,c

*********************************** ***********************************

*

* MODULE NAME: write()

* MODULE FUNCTION:

* File contains the TCP/TP4/TCP Translator socket "write" data

* replacement routine.

* SPECIFICATION DOCUMENTS:

* /Lan/Translator/Specs

* ORIGINAL AUTHOR AND IDENTIFICATION:

Timothy J. Barton - Software Engineering Section

Data Systems Department

Automation and Data Systems Division

Southwest Research Institute

#include "translator.h"

#include <errno.h>

int write(filedes, buf, nbyte)

int filedes;

char *buf;

unsigned nbyte;

/*

*/

See if the system has a socket fd, if so, use the Translator

send() routine to write the data across the TP4 VC. If the

system doesn't have a socket, then write the data using the

Translator write() replacement.

if (getsockopt(filedes,SOL_SOCKET,SO_DEBUG, 0,0) == ERR)

if ((errno _ EBADF) IS (errno == ENOTSOCK))

return(t write(filedes,buf,nbyte));

return(send(filedes,buf,nbyte,0));

'e" "_:_:::!:!:!:i:_:3_:!_:_>

.._.J

